
Correctness-preserving Compression of
Datasets and Neural Network Models

Vinu Joseph, Nithin Chalapathi, Aditya Bhaskara, Ganesh Gopalakrishnan, Pavel Panchekha and Mu Zhang
School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Abstract—Neural networks deployed on edge devices must be
efficient both in terms of their model size and the amount of data
movement they cause when classifying inputs. These efficiencies
are typically achieved through model compression: pruning a fully
trained network model by zeroing out the weights. Given the
overall challenge of neural network correctness, we argue that
focusing on correctness preservation may allow the community to
make measurable progress. We present a state-of-the-art model
compression framework called Condensa around which we have
launched correctness preservation studies. After presenting Con-
densa, we describe our initial efforts at understanding the effect
of model compression in semantic terms, going beyond the top
n% accuracy that Condensa is currently based on. We also take
up the relatively unexplored direction of data compression that
may help reduce data movement. We report preliminary results
of learning from decompressed data to understand the effects
of compression artifacts. Learning without decompressing input
data also holds promise in terms of boosting efficiency, and we
also report preliminary results in this regard. Our experiments
centered around a state-of-the-art model compression framework
called Condensa and two data compression algorithms, namely
JPEG and ZFP, demonstrate the potential for employing model-
and dataset compression without adversely affecting correctness.

Index Terms—Model Compression, Data Compression, Ma-
chine Learning, Correctness Verification

I. INTRODUCTION

As we face the convergence of HPC and data intensive

methods [1], an inescapable reality is that we must begin ad-

dressing the overall correctness of machine learning systems.

Most of today’s methods to judge the correctness of networks

relies on their top n% classification accuracy that captures

how well a network trained on its training data performs in

the deployment context.

Unfortunately, these methods do not take into account the

semantic content of what is being classified, and thus are

unable to provide its users a sufficiently useful metric of relia-

bility. For example, if one network makes errors with respect to

images within one semantic class (e.g., “dogs”) while another

network starts conflating images across classes (e.g., “dogs”

versus “weapons”), the former network is naturally considered

more reliable. While no single real-world decision is likely to

be based on the conclusion of a single sensor or classifier (in

multi-sensor situations, cross sensor constraints are likely to be

used to resolve ambiguities), it still behooves the community

Supported in part by NSF Awards 1704715, 1817073 and 1918497. Vinu
Joseph is supported in part by an NVIDIA Graduate Research Fellowship.
Nithin Chalapathi is supported by a fellowship from the Undergraduate
Research Opportunities Program, University of Utah. Correspondence to Vinu
Joseph: vinu@cs.utah.edu

DATA SET
TRAINED

MODEL

HYPOTHESIS SPACE

DOMAIN SPECIFIC
LOSS FUNCTION

TRAINING
ALGORITHM

Fig. 1. Illustrates the Learning System used to obtain a reference model
fw that will undergo compression represented by CM . CD refers to one
axis of Data compression, where we find a dataset of minimal cardinality to
characterize the optimal parameters of a model by using only most influential
points (similar to Support Vectors in SVM) and discarding the rest. CX refers
to data compression by using a compact representation (for example: Using
JPEG, ZFP) to store these examples.

to be making each sensor do a better job with respect to the

semantic content of what is being classified.

Unfortunately, correctness taken as a whole is a daunting

challenge: there are literally thousands of network architec-

tures and input classes one must confront. Given this vast

and open-ended nature of network correctness, the community

is better off making progress with respect to correctness in

restricted settings that may arise naturally during the training

and deployment of networks. In this work, we examine what

it takes for networks to be deployably efficient and pursue

the direction of correctness preservation: ensure that the net-

works are doing “similar” classification before and after such

efficiency measures are introduced. In the technical portion of

this position paper, we present two directions of research-in-

progress in our group toward attaining deployable levels of

efficiency, namely model compression and data compression.

More broadly, our correctness-preserving compression meth-

ods promise to provide important insights about when com-

pressed models are qualified to make decisions on real world

inputs. Our tools could be used to expose atypical examples

for further human inspection [2], choose not to classify certain

examples when the compressed model is uncertain [3]–[6], or

to aid in explaining the behavior of compressed models. [7]–

[10].

A. Model Training

In Figure (1) x is the input data to the unknown target

function f : X → Y , where X is the input space (set

of all possible inputs x), and Y is the output space (set of

all possible outputs). There is a dataset D of input-output

1

2020 IEEE/ACM 4th International Workshop on Software Correctness for HPC Applications (Correctness)

978-0-7381-1044-8/20/$31.00 ©2020 IEEE
DOI 10.1109/Correctness51934.2020.00006

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

examples (x1, y1), · · · , (xN, yN), where yn = f(xn) for

n = 1, · · · , N . The examples are often referred to as data

points. There is the learning algorithm A that uses the data

set D to select a model fW : X → Y that approximates

the unknown f . The algorithm chooses fW from a set of

candidate models (hypothesis set H) by minimizing a loss

function L. The same training setup is used in in the Model

Compression pipeline as described in the next section.

B. Model Compression (CM)

The main approach pursued for attaining deployable

efficiency—in both academic research [11]–[18] and in major

industrial practices [19], [20]—is model compression: taking

a trained model that has desired accuracy, safety, security, and

privacy properties, and then applying a compression algorithm

(π) to fit the network, fθ onto a mobile platform or edge

device. Today’s state-of-the-art compression methods mainly

aim to achieve high levels of network sparsity as well as high

overall classification accuracy.

In this work, we briefly examine the process of model

compression (§II) and how we can bring in additional aspects

of correctness into the picture based on mining how a network
arrives at its decisions.

C. Data Compression (CD and CX)

The sizes of data sets to be handled by deep networks

is witnessing an explosion. Medical image data sets for CT-

scan are known to be more than 2 Terabytes in size with a

representative workload containing around 2.4 million images

[21]. MovieLens 20M is a typical dataset for recommendation

systems that includes more than 20,000,000 ratings [22]. Find-

ing a dataset of minimal cardinality to characterize the optimal

parameters of a model is of paramount importance in machine

learning and distributed optimization over a network [23]. A

recent article [24] further elaborates on the growth of data set

sizes. The goal of CD is to investigate the compressibility of

large datasets. More specifically, can we jointly learn the input-

output mapping as well as the most representative samples

of the dataset (i.e., sufficient dataset)? Given the progress in

data compression methods, it is natural to ask the question of

whether one can incorporate compression into deep learning.

There are two natural directions in which to take this idea:

(1) storing data in a compressed format (CX), and (2) learning
directly from compressed data. There is growing awareness in

the community in the effects of compression-induced artifacts

and how to deal with misclassifications caused by it [25].

Learning directly from compressed data has recently received

attention [26] with the authors studying the advantages of

learning directly from JPEG-compressed data. There is how-

ever significant room to continue these lines of research to

encompass other compression algorithms, and even explore

the idea of choosing compression algorithms that minimize

misclassification error. We provide our preliminary results on

these topics.

USABILITY

PERFORMANCE

CORRECTNESS PRESERVING MODEL COMPRESSION

REFERENCE MODEL COMPRESSED MODEL

CONDENSA PROGRAMHYPOTHESIS SPACE

LOSS FUNCTION
OPTIMIZATIONS

ACCURACY RECOVERY
ALGORITHM

INSTANCE SPACE

OUTPUT SPACE

Fig. 2. Condensa Extensions: Delivering the Trifecta of Correctness-
preserving Model Compression: Performance, Usability and Correctness. X
represents the input space and the green box on the top bar represents a
batch of inputs, whose outputs when passed through the reference model
fW are represented by yW and the same batch produces yθ ,when passed
through fθ : both are subsets of the output space represented by Y . The
correctness-preservation means yW == yθ . fθ is obtained using a
Condensa compression program π represented by the red horizontal arrow.
Users can specify various compression related strategies like compression
scheme to apply, accuracy recovery algorithm A, Loss functions optimizations
L to incorporate correctness-preserving constraints. In section §A- §D below
we will describe the various correctness-preserving strategies.

Roadmap

In §II, we discuss how the semantic effects of model com-

pression can be systematically studied based on a state-of-the-

art programmable compression framework. In §III, we discuss

our initial studies of a data compression framework called

ZFP [27], [28] that is widely being studied in the arena of HPC

for reducing storage and data movement overheads. We also

have preliminary results comparing ZFP against JPEG [29].

In §IV, we provide directions for future work stemming from

these discussions.

II. MODEL COMPRESSION

Network compression is the process of converting a neural

network f for a certain task to a network f̃ that achieves

similar performance as f , but is considerably “simpler” with

respect to the memory footprint of the network or time (the

number of operations needed to classify an input using the

model). Many of the state-of-the art networks turn out to be

compressible to reasonably high extents [11], [18], [30] in

both these dimensions. This is because redundancy is often

built into networks, partly because it helps in the training

process to find better minima [31]. Space reduction can be

achieved in many ways including sparsifying individual layers

by removing certain weights, by reducing the number of bits

used in the floating point representation of the weights, by

removing “unimportant” features or convolutional filters, by

using matrix/tensor approximations to obtain a compact repre-

sentation of the connection matrix at every layer, and so on. We

now provide a brief overview of Condensa [32] (Figure 3) that

our experiments are based on. The user provides the pretrained

model f , a compression scheme, and an objective function

η. Condensa uses a novel acquisition function called Domain

2

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

w

Θ
s

A(s)

f

fs

f(s)

Fig. 3. The Condensa Framework for Model Compression (figure courtesy [30]). The user provides the pre-trained model fW , a compression scheme, and
an objective function f . uses the Bayesian and an L-C optimizer to infer an optimal target sparsity s∗ and corresponding compressed model fθ . This entire
process is denoted as the CM in Fig-(1)

Restricted Upper Confidence Bound (DR-UCB) in its Bayesian

optimization [33] formulation and LC optimization [34] to

infer an optimal target sparsity s∗ and corresponding com-

pressed model f̃ . The compression schemes are chosen from

a repertoire supported in the Condensa library. It is specified

in Python, and includes schemes such as pruning and quanti-

zation. The objective function η (throughput, FLOPs, memory

footprint, etc.) is also specified in Python using operators in

the Condensa library. Overall, Condensa follows the two-phase

approach of (1) using Bayesian Optimization with acquisition

function A to find an initial sparsity value sacc that meets

the target accuracy within a user-specified threshold; (2) it

then constrains the sparsity search space to (0, sacc) while

optimizing η to maximize performance.

Condensa is a state-of-the-art framework that understands

the microarchitecture of many modern GPUs and allows users

to programmatically build, train, and test neural networks,

while also lending significant assistance with hyperparameter

tuning. On realistic networks Condensa has delivered memory

footprint improvements of 188× and throughput improve-

ments of 2.59× using at most 10 Bayesian Optimization

samples per search [32]; these indicate the rapidity with which

compressed models can be arrived at. As to our choice of

LC, recent work [35], [36] has shown that for high-sparsity

regimes, LC performs really well, especially when the opti-

mization becomes difficult with stringent resource constraints

imposed.

Due to the resource constraints of deploying models to

mobile phones or embedded devices [37], [38] model compres-

sion is now is commonly used. An understanding of the Cor-
rectness Ramifications of Compression becomes particularly

important in sensitive domains like health care diagnostics

[39], [40], self driving cars [41] and hiring [42], [43], because

the introduction of compression may contradict safety, security

and privacy objectives.In the sections to follow, we discuss the

various correctness criteria that go beyond simple classification

accuracy as the acceptance metric. When comparing two

neural network models with different depths, number of edges,

Fig. 4. Output or Functional level Analysis : Effect of compression
on class-wise accuracy (CIFAR-10 with ResNet56 architecture, this
artifact depends on the kind of compression scheme used and dataset
distribution itself.)

number of filters, etc., the naı̈ve view of a network as a set

of parameters does not provide much information; neither do

simple parameters such as the training loss and test accuracy.

We need to look closely at what features of the input are

captured and how they impact classification. The measures we

provide below show a natural progression, going from a focus

on outputs, to intermediate layer activations, to input space

partitions, and aim to compare different semantic aspects.

A. Output or functional level.

The most black-box way to understand a network is to study

the classification it provides for different input classes. This

does not tell us how the network arrives at the classifica-

tion, but it contains more fine-grained information than the

aggregate accuracy. Figure 4 illustrates how a state-of-the-art

compression tool [30] affects the error in certain classes more

significantly than others — something we wish to avoid as it

may result in unfair treatment [25].

While class-wise accuracy numbers are more nuanced than

the overall accuracy, they are still a coarse representation of the

underlying issues. For example, we often observe “structure”

in the misclassifications: some classes are much more likely

3

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

Original (T: stretcher | IoU: 0.0584) First model (P: stretcher) Second model (P: mountain bike, all-terrain bike, off-roader)

Fig. 5. Cross layer comparisons: Image from ImageNet’s stretcher class, along with saliency maps showing the parts of the image “most
responsible” for classification by the reference and compressed models. Former obtains the correct class, while the latter classifies as mountain
bike, all-terrain bike. T:label represents Ground Truth, IoU:value represents the Jaccard similarity indices (Intersection Over Union)
between the two attribution maps. P:label represents the Predicted labels: The middle attribution map is obtained from the reference
model and the attribution map on the right is obtained from the compressed model. Under Correctness-preserving model compression, both
should be identical, resulting in an IoU=1.0 here IoU=̃0 indicting a mismatch. This attributions matching problem is critical in domains
like Healthcare and self-driving applications, which we tackle in our framework using optimizations in the L block.

to be misclassified as a few other classes than the rest of the

classes. That is, compression may result in one mammal being

misclassified as another mammal, but very rarely as an object.

This distinction can be important for safety and security, and

depending on the application (e.g., autonomous driving, home

cameras), some misclassifications are more costly than others.

We capture this distinction using an application-specific metric

or a distance function d(y1, y2) between classes y1 and y2
(see [44]).

Denoting the reference and the compressed networks by f
and f̃ respectively (these are functions mapping the inputs x
to labels y), the total misclassification cost of f̃ relative to f
is

Δμ,d(f̃ , f) :=
∑
x

μ(x)d(f̃(x), f(x)),

where μ(x) is the weight of the input x. The main questions

we study are: (1) how do known compression algorithms

perform with respect to the above metric for different choices

of d and the reference network? (2) how can we incorporate

this metric into the compression procedure?

Answering the first question will lead to an understanding

of which compression scheme is better for a given application.

Also, it may suggest that some reference networks are more

compressible than others while maintaining semantic informa-

tion. Such trends have been observed in our current framework

Condensa [30]. Answers to the second question will lead us

to better domain-specific compression.

B. Extension to feature space embeddings.

The layer below the final classifier is often used for

obtaining embeddings of inputs in the feature space or a

latent space. This embedding is useful because it captures a

network’s “knowledge” about an image better than the raw

classification. The popular notion of word-embeddings [45],

[46] in natural language processing, and the neural image

captioner [47], [48] used for generating captions for images

are both based on last-layer embeddings. In simple examples

like MNIST, visualizations of the feature embeddings reveal

a strong structure [49] in the embeddings for different digits.

We ask if compression can be made to preserve such structure

among embeddings. Studies in [50] indicate that this can

be highly effective in making the reference and compressed

models agree in predictions.

C. Cross-layer comparisons.

Both of the metrics discussed so far involved the final two

layers of the network – ones most directly tied to classification.

In many safety-critical applications, one may have constraints

such as “the two networks focus on the same aspects of an
image,” or “certain aspects of an image are not used for
classification.” To incorporate such constraints, we propose the

using methods from interpretability research such as saliency

maps and influence attribution [51]–[54]. These techniques

give a way to “trace” the factors in an input that contributed

to the overall classification. Given a network and an input

image x, a method such as [53], [54] outputs the influence (or

attribution score) of each pixel on the overall classification.

Interestingly, we find that in many cases of discrepancy

between the reference and the compressed model (e.g., Fig-

ure 5), the attributions differ significantly, indicating that the

two models focus on different regions of the input. Given the

attribution scores α and α′, we consider the weighted Jaccard

4

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

similarity (a generalization of the natural intersection-over-
union (IoU)) metric

sim(α, α′) =
∑

i min(αi, α
′
i)∑

i max(αi, α′
i)
.

When deploying a compressed network, a natural goal is to

have high value for this similarity. This can help avoid possible

security issues during deployment and in general lead to a

higher agreement between the models.

D. Neighborhoods in the Input space.

Decision Boundaries

Class B

Class A

Fig. 6. Input Space Analysis: Here fW and fθ represent the decision
boundaries of the models before and after compression optimizations
CM : Computing these are intractable in general, but in our formu-
lations we restrict distance computations to linear directions. The
change in distance, along a random direction, from training data to
the decision boundary captures changes in robustness.

Robustness against perturbations is a critical parameter for

deployability. Robustness can be understood by studying how

close different inputs are to the class boundaries. Prior works

such as [25], [55], [56] study the average distance to the class

boundary along random and worst-case directions, and use

this information for improving models. A key feature of our

framework with its correctness-extensions will be to incorpo-

rate robustness specifications into the compression pipeline.

Our goals here are: (1) to study the effect of compression

on the distances to class boundaries for different forms of

compression, and (2) to incorporate robustness specifications

for adversarial, benign and random perturbations into com-

pression.

The first goal will help build a theory of when compression

preserves robustness. For example, preliminary experiments

on CIFAR-10 with filter pruning show that the distance to de-

cision boundaries along random directions are approximately

preserved for many, but not all, images (see Figure 6).

III. DATA COMPRESSION

While model compression reduces compute and memory

requirements, compression of the input dataset can also yield

efficiency gains. It is well known that early convolutional

layers learn Gabor filters while latter layers learn more abstract

features [57], [58]. Moreover, as neural networks gain traction

in domains with large datasets (i.e. CT-scans [21]), dataset

size becomes a bottleneck in terms of decompression (Decode

block in NVIDIA-DALI [59] for example), storage, and I/O

operations. As such, dataset compression becomes a promising

area for efficiency improvements, both during training and

inference. [26] studies the JPEG codec and draws an analogy

between the discrete cosine transformation (DCT) and the

initial layers of a convolutional neural network. They introduce

several architectural changes to ResNet-50 to take advantage

of the DCT. By leveraging the DCT coefficients, they reduce

the size of ResNet-50 and increase its throughput (frames

per second). However, this observation is not specific to the

JPEG codec. In particular, ZFP [27] has become a common

lossy compression technique used in HPC. ZFP performs a

similar near-orthogonal transformation to the DCT. ZFP is a

promising dataset compression candidate due to recent work

focused on providing error analysis [28], [60] and stability

results of iterative methods using ZFP compression [61]. ZFP

is a lossy compression algorithm that was designed specifically

for floating-point arrays [28]. Other competitive lossy com-

pression algorithms typically require global information. For

example SZ [62] compresses each data value using a predictive

model by using the adjacent data points in multidimensional

space, requiring an ordering of values that inherently limits the

data streaming capabilities that could be utilized for machine

learning. However, ZFP, first introduced in [27], and modified

in [28], only uses local information by first partitioning the

d-dimensional scalar array into blocks of 4d scalars, which

are compressed and decompressed independently. ZFP uses

a custom near-orthogonal transform on the 4d-size blocks to

remove redundancies in the data through a change in basis. By

using negabinary (base −2) to represent the basis coefficients

and reordering the coefficients, the leading zeros of small

valued coefficients are grouped together when ordered by

bit-plane instead of by coefficient. Each bit-plane is then

losslessly compressed using an embedded coding scheme [27]

which emits one bit at a time until some stopping criterion

is satisfied. The stopping criterion for ZFP has three modes:

fixed-precision, fixed-rate, and fixed-accuracy. The fixed-rate

mode compresses a block to a fixed number of bits, the fixed-

precision mode compresses to a variable number of bits while

retaining a fixed number of bit planes, and the fixed-accuracy

mode compresses a block with relation to the tolerated max-

imum error. Further work will be needed to investigate how

to extend existing error analysis techinques of ZFP to neural

networks. Beyond the theoretical guarantees afforded by ZFP,

there are a number of systems benefits including an publicly

available open-source CUDA implementation, the ability to

determine compression level at decode time, random array

access, and various compression modes for customization.

A. System Benefits of Dataset compression

First, for various network architectures, we find a com-

pression level such that a compressed CIFAR-10 dataset is

5

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Illustrates Correctness-preservation using Output level Analysis: (Left) Top-1 Test Accuracy vs. JPEG quality parameter on CIFAR
10. Top-1 Test Accuracy vs. ZFP Precision (Middle) and Rate Compression (Right) on CIFAR 10. Details in Section C below.

TABLE I
SYSTEM BENEFITS OF DATASET COMPRESSION: CIFAR 10 COMPRESSED

SIZE IN PROPORTION TO THE UNCOMPRESSED DATASET AT VARIOUS

ERRORS, R: ZFP-RATE COMPRESSION SCHEME AND P:ZFP-PRECISION

SCHEME, HERE ε REPRESENTS THE % TOP-1 ACCURACY THE USER IS

WILLING TO LET GO AFTER CX OPTIMIZATION.

COMPR DNN ARCHITECTURE ε = 2% ε = 5%
JPEG ALEXNET 2.3% 2.1%
ZFP - R ALEXNET 1.9% 1.5%
ZFP - P ALEXNET 1.6% 1.6%

JPEG VGG19-BN 3.4% 2.8%
ZFP - R VGG19-BN 3.2% 2.3%
ZFP - P VGG19-BN 3.5% 2.5%

JPEG DENSENET-BC (L=100, K=12) 3.9% 3.2%
ZFP - R DENSENET-BC (L=100, K=12) 4.1% 3.2%
ZFP - P DENSENET-BC (L=100, K=12) 4.6% 3.5%

JPEG DENSENET-BC (L=190, K=40) 3.9% 3.1%
ZFP - R DENSENET-BC (L=190, K=40) 3.6% 2.8%
ZFP - P DENSENET-BC (L=190, K=40) 3.5% 3.5%

JPEG RESNEXT-29, 16X64D 2.3% 2.1%
ZFP - R RESNEXT-29, 16X64D 1.9% 1.5%
ZFP - P RESNEXT-29, 16X64D 2.4% 1.6%

JPEG WRN-28-10-DROP 3.5% 3.0%
ZFP - R WRN-28-10-DROP 3.2% 2.8%
ZFP - P WRN-28-10-DROP 3.5% 2.5%

JPEG RESNEXT-29, 8X64D 3.5% 3.0%
ZFP - R RESNEXT-29, 8X64D 3.6% 2.8%
ZFP - P RESNEXT-29, 8X64D 3.5% 2.5%

within 2% and 5% of the original validation accuracy. Second,

we compare storage requirements of the compressed images

as a percent of the uncompressed dataset (see Table I). On

balance, ZFP is able to achieve a higher rate of compression
at equivalent error tolerances. Finally we also expect that

when we learn directly from compressed data the Decode

compute which is a mixed compute workload CPU-GPU can

be eliminated – today this step is part of the NVIDIA DALI

pipeline that decompresses the JPEG data before feeding it

to the training or inference kernels. The end user only
cares about end-to-end speed up during training and
inference of the neural network, whether it came from data
compression or neural network compresssion is irrelevant.
It is therefore important that we carefully utilize profiling

tools like nvprof and Rapids Extensions [63] and identify the

bottlenecks and fix them.

B. Learning Directly from Compressed Data

While these results indicate the potential of ZFP, we can

gain additional compute and memory savings by learning

directly from the ZFP coefficients, similar to [26] where they

learn directly from DCT coefficients. With no hyperparam-

eter tuning or architectural changes, we are able to recover

90+% accuracy on CIFAR-10. We believe that, with sufficient

searching over the hyperparameter space and investigation

using the aforementioned debugging stack, the loss in accuracy

can be recovered and that the compression parameter can be

increased. We continue to explore the correctness ramifications

of using ZFP compressed datasets and learning directly from

ZFP coefficients and the system benefits it will offer. In the

next sections we present our initial results on Correctness-

preserving techniques on such compact networks.

C. Correctness-preservation using Output level Analysis
In Figure 7, we plot the accuracy versus compression

parameter curves for both JPEG and ZFP rate mode. In this

setup, we load the image from disk, compress and decompress

the image, then pass it through various neural networks. This

provides a higher level picture of the accuracy drop off when

introducing compression artifacts. Of particular interest here

is AlexNet and ResNext-29 8x64D in the JPEG plot. These

6

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

TABLE II
LEARNING DIRECTLY FROM COMPRESSED DATA: MODEL VALIDATION ACCURACY TRAINED ON ZFP COEFFICIENTS

ZFP PRECISION VGG19-BN RESNET-110 PRERESNET-110 WRN-28-10-DROP DENSENET-BC (L=100, K=12)

2 40.75% 40.67% 41.28% 40.98% 40.83%

3 64.84% 63.76% 65.14% 66.33% 64.84%
4 76.91% 76.91% 77.42% 79.58% 77.84%
5 83.51% 84.55% 84.48% 87.61% 86.05%

6 87.79% 87.62% 88.03% 91.55% 90.04%
7 89.23% 88.53% 89.67% 92.77% 91.2%
8 89.87% 89.03% 90.4% 93.54% 92.35%
9 89.99% 89.67% 90.4% 93.68% 92.59%

10 89.79% 90.46% 90.88% 93.79% 92.4%
11 90.43% 90.2% 90.42% 93.76% 93.18%
12 90.15% 90.4% 90.66% 94.09% 92.49%

RAW IMAGES 93.43% 93.41% 94.02% 96.12% 95.24%

Fig. 8. Illustrates Correctness-preservation using Cross layer comparisons: Attributions of misclassified CIFAR-10 images when compressed
with ZFP and JPEG when using ResNeXt-29, 8x64d. Original labels are, from top to bottom, dog (JPEG misclassification), car (ZFP
misclassification), plane (ZFP and JPEG misclassification). Details in Section D below.

are the only two networks without batch normalization. As a result, they are more resilient to the noise introduced by JPEG.

7

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

Batch normalization (BN) layers computes the mean and the

standard deviation of the activations and projects them to

activations with zero mean and unit norm [64]. These are then

projected back using the learned parameters. The interesting

part is the normalization phase. Since the network always saw

images which were without any JPEG or ZFP compression

noise, the learned normalization values are based on those

clean images. Once the level of noise increases, this renders

the computed mean and standard deviation to be meaningless,

resulting in a very significant drop in performance. Therefore,

whenever BN layers are employed, they will be very sensitive

to changes in the input values. Even minor perturbations can

adversely effect the network. We view BN layers to be just an

amplification of the minor perturbations. On the other hand,

when there is no normalization, there is no explicit noise

amplification resulting in much higher resilience against noise

and perturbations.

D. Correctness-preservation using Cross-layer comparisons
The levels of debugging and analysis in §II can be applied

at the dataset level as well. We conducted a preliminary study

to review the compression artifacts introduced by ZFP and

compare it with JPEG. In Figure 8 we demonstrate cross-layer
comparisons to get a better view of the type of artificating ZFP

creates in comparison to JPEG. We overlay attribution maps

generated using occlusion [65] and an IoU score is computed

with respect to the uncompressed attribution.

IV. CONCLUSIONS, FUTURE WORK

In this paper we presented correctness-preserving compres-

sion methods for compression of large datasets and over-

parameterized neural network models. The correctness abstrac-

tions that we have developed were naturally suitable for both

model compression (CM) and data compression optimizations

(CD,CX). A user of our framework can use these layers of

abstractions to debug failure modes of both these optimiza-

tions alike. We illustrated the use of two such debugging

techniques on CIFAR-10. On the model compression side,

we are developing optimization algorithms and additional loss

terms (L block) by which we automatically determine the

optimal weights when we incorporate correctness-preservation

as constraints. On the data compression side, we will continue

to explore the benefits and trade-offs when using ZFP to

compress floating point datasets and learning directly from

the compressed space. A challenge that arises in this specific

domain is how to comprehensively compare different com-

pression spaces (i.e. DCT Coefficients vs. ZFP Coefficients).

Although disk utilization is one simple metric, more nuanced

measures are clearly needed to analyze the benefits of various

compression schemes.

ACKNOWLEDGMENT

The authors thank Saurav Muralidharan, Michael Garland,

Animesh Garg, Shoaib Ahmed Siddiqui, Alyson Fox and

Peter Lindstrom for discussions. This work is based on ideas

published in [32] and other items of work in progress under

various collaborations.

REFERENCES

[1] G. Fox, A. Adiga, J. Chen, O. Beckstein, S. Jha, J. A. Glazier,
J. Kadupitiya, V. Jadhao, M. Kim, J. Qiu, and et al., “Learning
everywhere: Pervasive machine learning for effective high-performance
computation,” 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), May 2019. [Online].
Available: http://dx.doi.org/10.1109/IPDPSW.2019.00081

[2] C. Leibig, V. Allken, M. S. Ayhan, P. Berens, and S. Wahl, “Lever-
aging uncertainty information from deep neural networks for disease
detection,” Scientific reports, vol. 7, no. 1, pp. 1–14, 2017.

[3] P. L. Bartlett and M. H. Wegkamp, “Classification with a reject option
using a hinge loss,” Journal of Machine Learning Research, vol. 9, no.
Aug, pp. 1823–1840, 2008.

[4] C. Cortes, G. DeSalvo, and M. Mohri, “Boosting with abstention,” in
Advances in Neural Information Processing Systems, 2016, pp. 1660–
1668.

[5] ——, “Learning with rejection,” in International Conference on Algo-
rithmic Learning Theory. Springer, 2016, pp. 67–82.

[6] C. Cortes, G. DeSalvo, C. Gentile, M. Mohri, and S. Yang, “Online
learning with abstention,” arXiv preprint arXiv:1703.03478, 2017.

[7] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough,
learn to criticize! criticism for interpretability,” in Advances in neural
information processing systems, 2016, pp. 2280–2288.

[8] K. S. Gurumoorthy, A. Dhurandhar, G. Cecchi, and C. Aggarwal,
“Efficient data representation by selecting prototypes with importance
weights,” in 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 2019, pp. 260–269.

[9] R. Caruana, “Case-based explanation for artificial neural nets,” in
Artificial Neural Networks in Medicine and Biology. Springer, 2000,
pp. 303–308.

[10] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A benchmark for
interpretability methods in deep neural networks,” in Advances in Neural
Information Processing Systems, 2019, pp. 9734–9745.

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in Proceedings of ICLR 2016, ser. ICLR’16, 2016.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” 2017.
[Online]. Available: http://arxiv.org/abs/1704.04861

[13] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and ¡1mb model size,” ArXiv, vol. abs/1602.07360, 2017.

[14] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015,
pp. 1135–1143. [Online]. Available: http://papers.nips.cc/paper/5784-
learning-both-weights-and-connections-for-efficient-neural-network.pdf

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Computer Vision – ECCV 2016, 2016.

[16] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA ’16, 2016.

[17] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[18] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=rJl-b3RcF7

[19] https://www.tensorflow.org/lite, 2020.

[20] https://pytorch.org/tutorials/intermediate/pruning tutorial.html, 2020.

[21] Oracle, “Performance evaluation of storage and retrieval of dicom
image content in oracle database 11g using hp blade servers and intel
processors,” White Paper, 2010.

[22] GroupLens, “https://grouplens.org/datasets/movielens/20m/,” Documen-
tation.

8

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

[23] H. Shokri-Ghadikolaei, H. Ghauch, C. Fischione, and M. Skoglund,
“Learning and data selection in big datasets,” in 36th International
Conference on MachineLearning, Long Beach, California, PMLR 97,
2019., 2019.

[24] I. Tobore, J. Li, L. Yuhang, Y. Al-Handarish, A. Kandwal, Z. Nie, and
L. Wang, “Deep learning intervention for health care challenges: Some
biomedical domain considerations,” Aug. 2019. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696854/

[25] S. Hooker, A. Courville, Y. Dauphin, and A. Frome, “Selective brain
damage: Measuring the disparate impact of model pruning,” arXiv
preprint arXiv:1911.05248, 2019.

[26] L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and J. Yosinski,
“Faster neural networks straight from jpeg,” in Advances
in Neural Information Processing Systems 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 3933–
3944. [Online]. Available: http://papers.nips.cc/paper/7649-faster-neural-
networks-straight-from-jpeg.pdf

[27] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[28] J. Diffenderfer, A. L. Fox, J. A. Hittinger, G. Sanders, and P. G.
Lindstrom, “Error analysis of zfp compression for floating-point data,”
SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. A1867–
A1898, 2019. [Online]. Available: https://doi.org/10.1137/18M1168832

[29] [Online]. Available: https://jpeg.org

[30] V. Joseph, S. Muralidharan, A. Garg, M. Garland, and G. Gopalakrish-
nan, “A programmable approach to model compression,” 2019.

[31] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “The
role of over-parametrization in generalization of neural networks,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=BygfghAcYX

[32] V. Joseph, G. L. Gopalakrishnan, S. Muralidharan, M. Garland, and
A. Garg, “A programmable approach to neural network compression,”
IEEE Micro, vol. 40, no. 5, pp. 17–25, 2020.

[33] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17, 2017.

[34] M. A. Carreira-Perpinán, “Model compression as constrained optimiza-
tion, with application to neural nets. part I: General framework,” arXiv
preprint arXiv:1707.01209, 2017.

[35] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding and fine-
tuning in neural network pruning,” arXiv preprint arXiv:2003.02389,
2020.

[36] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” arXiv preprint arXiv:2003.03033, 2020.

[37] A. Estava, B. Kuprel, R. Novoa et al., “Dermatologist level classification
of skin cancer with deep neural networks [j],” Nature, vol. 542, p. 115,
2017.

[38] A. See, M.-T. Luong, and C. D. Manning, “Compression of neural ma-
chine translation models via pruning,” arXiv preprint arXiv:1606.09274,
2016.

[39] R. Gruetzemacher, A. Gupta, and D. Paradice, “3d deep learning for
detecting pulmonary nodules in ct scans,” Journal of the American
Medical Informatics Association, vol. 25, no. 10, pp. 1301–1310, 2018.

[40] H. Xie, D. Yang, N. Sun, Z. Chen, and Y. Zhang, “Automated pulmonary
nodule detection in ct images using deep convolutional neural networks,”
Pattern Recognition, vol. 85, pp. 109–119, 2019.

[41] NHTSA, Technical report, U.S. Department of Transportation,
National Highway Traffic, Tesla Crash Preliminary Evalua-
tion Report Safety Administration, 2017. [Online]. Available:
https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.PDF

[42] D. Harwell, A face-scanning algorithm increasingly decides whether
you deserve the job, 2019 (accessed March 23, 2019). [Online].
Available: https://wapo.st/2X3bupO

[43] J. Dastin, Amazon scraps secret ai recruiting tool that showed bias
against women, 2018 (accessed March 23, 2019). [Online]. Available:
https://reut.rs/2p0ZWqe

[44] C. Qin, K. D. Dvijotham, B. O’Donoghue, R. Bunel, R. Stanforth,
S. Gowal, J. Uesato, G. Swirszcz, and P. Kohli, “Verification
of non-linear specifications for neural networks,” in International

Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=HyeFAsRctQ

[45] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[46] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013. [Online]. Available:
http://arxiv.org/abs/1301.3781

[47] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3156–3164, 2015.

[48] K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S.
Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption gen-
eration with visual attention,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume
37, ser. ICML’15. JMLR.org, 2015, p. 2048–2057.

[49] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
212–220.

[50] B. Chen, W. Liu, A. Garg, Z. Yu, A. Shrivastava, J. Kautz, and
A. Anandkumar, “Angular visual hardness,” 2019.

[51] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
in 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available:
http://arxiv.org/abs/1312.6034

[52] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International
Publishing, 2014, pp. 818–833.

[53] B. Kim, W. M., J. Gilmer, C. C., W. J., , F. Viegas, and R. Sayres,
“Interpretability Beyond Feature Attribution: Quantitative Testing with
Concept Activation Vectors (TCAV) ,” ICML, 2018.

[54] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ser. ICML’17. JMLR.org, 2017, p.
3319–3328.

[55] F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and D. Boneh, “Adver-
sarial: Perceptual ad blocking meets adversarial machine learning,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19, 2019.

[56] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan,
“Theoretically principled trade-off between robustness and accuracy,”
2019.

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[58] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” CoRR, vol. abs/1411.1792, 2014.
[Online]. Available: http://arxiv.org/abs/1411.1792

[59] NVIDIA, “Nvidia dali documentation,” Documentation.
[60] P. Lindstrom, “Error Distributions of Lossy Floating-Point Compres-

sors,” in Joint Statistical Meetings, 2017, pp. 2574–2589.
[61] A. Fox, J. Diffenderfer, J. Hittinger, G. Sanders, and P. Lindstrom,

“Stability Analysis of Inline ZFP Compression for Floating-Point Data
in Iterative Methods,” SIAM Journal on Scientific Computing, 2020.

[62] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data), 2018, pp. 438–447.

[63] NVIDIA, “https://github.com/rapidsai/jupyterlab-nvdashboard,” Github
Link.

[64] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” CoRR, vol. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[65] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” CoRR, vol. abs/1311.2901, 2013. [Online].
Available: http://arxiv.org/abs/1311.2901

9

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 03,2024 at 20:07:49 UTC from IEEE Xplore. Restrictions apply.

