
Inferring Visualization Intent from Conversation
Haotian Li∗

HKUST
Hong Kong SAR, China

haotian.li@connect.ust.hk

Nithin Chalapathi∗
UC Berkeley

Berkeley, CA, USA
nithinc@berkeley.edu

Huamin Qu
HKUST

Hong Kong SAR, China
huamin@cse.ust.hk

Alvin Cheung
UC Berkeley

Berkeley, CA, USA
akcheung@berkeley.edu

Aditya G. Parameswaran
UC Berkeley

Berkeley, CA, USA
adityagp@berkeley.edu

Abstract

During visual data analysis, users often explore visualizations one
at a time, with each visualization leading to new directions of ex-
ploration. We consider a conversational approach to visualization,
where users specify their needs at each step in natural language,
with a visualization being returned in turn. Prior work has shown
that visualization generation can be boiled down to the identifi-
cation of visualization intent and visual encodings. Recognizing
that the latter is a well-studied problem with standard solutions,
we focus on the former, i.e., identifying visualization intent during
conversation. We develop Luna, a framework that comprises a
novel combination of language models adapted from BERT and
rule-based inference, that together predict various aspects of vi-
sualization intent. We compare Luna with other conversational
NL-to-visualization and NL-to-SQL approaches (adapted to visual-
ization intent), including GPT-3.5 and GPT-4, and demonstrate that
Luna has 14.3% higher accuracy than the state-of-the-art. We also
apply Luna to a usage scenario on a dataset of police misconduct,
showcasing its benefits relative to other approaches.

CCS Concepts

•Human-centered computing→Visualization; • Information

systems → Data management systems.

Keywords

Conversational Natural Language Interface, Visualization Recom-
mendation

ACM Reference Format:

Haotian Li, Nithin Chalapathi, Huamin Qu, Alvin Cheung, and Aditya G.
Parameswaran. 2024. Inferring Visualization Intent from Conversation. In
Proceedings of the 33rd ACM International Conference on Information and
KnowledgeManagement (CIKM ’24), October 21–25, 2024, Boise, ID, USA.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3627673.3679589

∗Both authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679589

1 Introduction

Visual data analysis, while essential for making sense of data, is
still challenging for the vast majority of users. While programmatic
visualization tools such as Vega-Lite [32] or Matplotlib [15], provide
great flexibility in selecting what and how to visualize, they have a
high learning curve. Meanwhile, other visual business intelligence
tools such as Tableau [5] and PowerBI [3], require users to navigate
complex user interfaces to build visualizations. “No-code” inter-
faces such as natural language have thus emerged as an alternative
that allow users to build visualizations without programming expe-
rience. SuchNL2Vis systems have been proposed to infer user intent
based on a natural language question, and using that to suggest
appropriate visualizations, e.g., Chat2Vis [25], and ncNet [22].

However, prior work ignores the fact that visual data analysis is
iterative, where users build on findings from previous steps [16, 19,
41]. We therefore consider a conversational approach to visualiza-
tion. Our scenario of a data journalist studying police misconduct
in Fig. 1 Cols. 1 and 2 shows that a conversational feedback loop
between system generated visualizations and user requests is well-
suited for visual data analysis To address this need, there have been
some systems for generating visualizations during conversation,
employing rule-based approaches [12, 26, 28]. However, their rule-
based nature limits flexibility and makes them brittle. For example,
NL4DV [28], the newest such system cannot handle cases where
the column name is not described exactly as in the input schema,
as shown in Figs. 1(a) and (e), Col. 4.

In this paper, we propose a robust approach for conversational
generation of visualization. Prior work [20, 42, 47] has shown that
generating visualizations can be divided into two distinct steps:
identifying data-specific visualization intent (i.e., visualized at-
tributes and data filters) and determining visual encodings (i.e., how
the data should be visualized). The latter can be inferred based on
best practices [23, 24, 27] given the former.We therefore focus on in-
ferring visualization intent from conversation. One approach
is to leverage natural language to SQL (NL2SQL) models that trans-
late user intent from natural language into SQL queries using a sin-
gle “end-to-end” deep learning model such as CD-Seq2Seq [40, 46],
R2SQL [14], and PICARD [33]. However, these approaches cannot
guarantee that syntactically and semantically correct SQL queries
are produced, making extracting visualization intent from their
generated SQL queries challenging. Indeed, such models fail in four
of the six steps in Fig. 1, Col. 5. Yet another approach is to use
general-purpose large language models (LLMs), such as GPT-3.5 [2]

1184

https://doi.org/10.1145/3627673.3679589
https://doi.org/10.1145/3627673.3679589
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679589&domain=pdf&date_stamp=2024-10-21

CIKM ’24, October 21–25, 2024, Boise, ID, USA Haotian Li, Nithin Chalapathi, HuaminQu, Alvin Cheung, and Aditya G. Parameswaran

and GPT-4 [30]. While these LLMs seem to perform better than
other baseline approaches in Fig. 1, they still suffer from the issue
of losing context in conversations and inferring incorrect intent.

Based on the insights from prior NL2Vis and NL2SQL tools, we
identify multiple technical challenges in inferring visualization
intent and propose a new framework called Luna to address the
challenges effectively. First, the output intent should always be
system-interpretable to guarantee that visualizations can be shown
to users at each step. To tackle the challenge, we apply a divide-
and-conquer strategy, instead of end-to-end as in PICARD and GPT
models, for predicting users’ intent. We break down the task of
predicting intent (i.e., visualized attributes and data filters) into
multiple sub-tasks (see Fig. 2), each learned via a specialized mod-
ule. To predict the attributes to be visualized, we first determine the
number of attributes and then use this to select the attributes that
best associate with the users’ query. Similarly, the filter attributes
are inferred using two steps: determining the number of filters and
then the attribute in each filter. Finally, the operators and values
in filters are predicted accordingly for each filter attribute. This
breakdown makes learning straightforward and guarantees syn-
tactically correct and always-executable intents. Furthermore, we
can select different neural architectures or inference algorithms
for each sub-task. Secondly, the tool should understand context
in conversations (i.e., users’ previous questions and systems’ re-
sponses) to facilitate the iterative nature of data analysis and the
ambiguity in natural languages. We handle these issues using a
carefully designed combination of language models and rule-based
methods for each sub-task, and a specifically designed input format
to summarize the context in conversations.

We evaluate Luna by comparing it against NL4DV [26], two
state-of-the-art NL2SQL models (two PICARD variants with T5-
3B and T5-Large [31] and CD-Seq2Seq), and two state-of-the-art
LLMs (GPT-3.5 [2] and GPT-4 [30]). Our approach achieves 57.31%
accuracy on the test set—a 14.3% improvement over the state-of-
the-art, PICARD with T5-Large and 27.72% over GPT-4, the best
performing general-purpose LLM. Furthermore, Luna has a lower
GPU memory consumption and inference time than PICARD, the
state-of-the-art baseline approach. Overall, our contributions are:
• We divide visualization intent inference into six sub-tasks to en-

sure the generation of always valid visualization intent, produce
simpler sub-tasks, and enable flexible choices for the structure
of the module addressing each sub-task (Sec. 3).

• Following the task breakdown, we design Luna, which leverages
multiple specialized modules for inferring different aspects of
visualization intent (Sec. 4).

• We evaluate Luna through a quantitative comparison with the
state-of-the-art, evaluation of individual modules, and a real-
world application using a police misconduct dataset. Luna out-
performs other approaches with a 14.3% improvement in accu-
racy with only 0.1% of the inference time (Secs. 5 and 6).

2 Motivating Example

Suppose our data journalist Ada wants to study incidents of police
misconduct using a dataset from the California Reporting Project
(CRP) [11]. This use case is based on our collaboration as part of

the CLEAN (Community Law Enforcement Accountability Net-
work) consortium, with journalists and public defenders, to inves-
tigate police misconduct through data. One of its relations (many
columns/rows omitted) is in Table 1 that records the time/location
of each incident, and if weapons were found. As a programming
novice, Ada uses a conversational interface, powered by Luna, as
shown in Fig. 1. Luna identifies the data-specific visualization intent
comprising of the visualized attributes and filters to be applied.

Table 1: Examples of incidents from the CRP dataset

id weapon_found city county day month year

240 yes Bakersfield Kern 25 6 2016
465 no Richmond Contra Costa 9 9 2019
841 no Oakland Alameda 17 3 2014

To start her exploration, Ada first inspects the locations of the
incidents by asking “Where do the cases happen?” and receives a
chart shown in Fig. 1(a) Col. 2. Based on the question, Luna infers
that Ada wants to plot the distribution of cases in different cities
(i.e., the visualized attribute intent is city, without any filters). She
then wants to see the distribution over counties and asks “In which
counties do the cases happen?”. Ada notices Contra Costa County has
the most cases from the chart (Fig. 1(b)), wants to monitor the tem-
poral changes of such incidents, and asks “How do the cases change
over the years?”. Seeing that 2016 was a turning point (Fig. 1(c)), she
then asks “Can you show me the distribution of cases where weapons
are found or not?”. The generated chart (Fig. 1(d))—where the intent
involves just the weapon_found attribute—reveals that most cases
do not involve weapons. Ada wonders if this the same trend contin-
ues after 2016, asks “What about those cases happened after 2016?”,
and receives Fig. 1(e)—with the intent now including a filter on
year. She notices a minor improvement after 2016, and drills down
to Contra Costa County again by asking “Then can you also show
the numbers of those cases in Contra Costa County?”. The results are
shown in Fig. 1(f), where an additional filter on county is added.

For comparison, Fig. 1 also shows other approaches: NL4DV [28],
a rule-based conversational NL2Vis tool, PICARD [33], a state-of-
the-art conversational NL2SQL approach built on T5 [31], Chat2Vis [25],
a conversational interface built on GPT-3.5 [2], and general-purpose
LLMs (GPT-3.5 [2] and GPT-4 [30]). We provide the visualization
intent and corresponding visualizations for each approach. Since
Chat2Vis does not expose the code for generating visualizations,
we only provide the returned visualizations.

As shown in Fig. 1, end-to-end generative models such as PI-
CARD and Chat2Vis often fail to generate syntactically valid

code. They generate non-executable code (Fig. 1(c)-(f)), nonsensical
visualizations (Figs. 1(b)), or erroneous SQL (Figs. 1(c)-(d) where
non-aggregated columns are returned and Fig. 1 (f) where single
instead of double quotations is used for string literals—which is not
permitted according to the SQL-92 standard. PICARD also gener-
ates imaginary filter values, such as “Yes” in Fig. 1(f), where the
values in the column are “yes” and “no.” The same happens to the
LLMs where both GPT models return “Contra Costa County” as
the filter value in Fig. 1(f), leading to an empty result. Second, rule-
based approaches, such as NL4DV, are ineffective in dealing

with the ambiguity of natural language. Figs. 1(a) and (e) show
examples where no attribute is explicitly mentioned. NL4DV fails
on this case as it requires an exact match of attribute names. The
failure in Fig. 1(e) further leads to a missing filter on year in Fig. 1(f).

1185

Inferring Visualization Intent from Conversation CIKM ’24, October 21–25, 2024, Boise, ID, USA

0 50 100 150 200 250
Number of Records

Richmond
Bakersfield
San Diego
San Jose

Dublin
Santa Rita

Albany
San Pablo

Oakland
Pinole

ci
ty

+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...

U�erance NL4DV Chat2VisPICARDLuna

Where do the cases happen?

In which counties do the
cases happen?

How do the cases change
over the years?

Can you show me the
distribution of cases where
weapons are found or not?

What about those cases
happened after 2016?

Then can you also show the
numbers of those cases
in Contra Costa County?

0 20 40 60 80
Number of Records

no

yesw
ea

po
n

fo
un

d

county = Contra Costa, year > 2016

Chat2Vis returns
“Unfortunately the code generated

from the model contained errors
and was unable to execute”

The tool fails to generate
any visualization.

Al
am

ed
a

C
on

tra
 C

os
ta

Ke
rn

Sa
n

D
ie

go

Sa
n

M
at

eo

Sa
nt

a
C

la
ra

county

0

50

100

150

200

250

C
ou

nt
 o

f R
ec

or
ds

2013 2014 2015 2016 2017 2018 2019
year

0

20

40

60

80

100

120

C
ou

nt
 o

f R
ec

or
ds

no ye
s

weapon found

0

50

100

150

200

250

300

350

C
ou

nt
 o

f R
ec

or
ds

no ye
s

weapon found

0

20

40

60

80

100

120

140

160

180

C
ou

nt
 o

f R
ec

or
ds

select county, year*
from incident

group by county

select county, year,
weapon_found* from
incident group by

county, year

select count (*)
from incident

where year > 2016

select count (*)
from incident where
weapon_found = 'Yes'

and county =
"Contra Costa"*

(a)

(b)

(c)

(d)

(e)

(f)

* The code has a
syntax error here

* The code has a
syntax error here

* The code has a
syntax error here

Intent: year

Intent: county

Intent: year

Intent: city

0 50 100 150 200 250
Number of Records

Richmond
Bakersfield
San Diego
San Jose

Dublin
Santa Rita

Albany
San Pablo

Oakland
Pinole

ci
ty

+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...

0 50 100 150 200 250
Number of Records

Contra Costa

Kern

San Diego

Alameda

Santa Clara

San Mateo

co
un

ty

Intent: county

Chat2Vis returns
“Unfortunately the code generated

from the model contained errors
and was unable to execute”

Intent: weapon_found

Intent: city

0 50 100 150 200 250
Number of Records

Richmond
Bakersfield
San Diego
San Jose

Dublin
Santa Rita

Albany
San Pablo

Oakland
Pinole

ci
ty

+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...

0 50 100 150 200 250
Number of Records

Contra Costa

Kern

San Diego

Alameda

Santa Clara

San Mateo

co
un

ty

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

year

0

20

40

60

80

100

120

Re
co

rd

0 100 200 300
Number of Records

no

yesw
ea

po
n

fo
un

d

0 50 100 150
Number of Records

no

yesw
ea

po
n

fo
un

d

year > 2016

Intent: county

Intent: weapon_found

Intent: weapon_found,
year > 2016

Intent: weapon_found,
county = ‘Contra Costa’, year > 2016

Intent: weapon_found,
county = ‘Contra Costa’

Chat2Vis returns
“Unfortunately the code generated

from the model contained errors
and was unable to execute”

Chat2Vis returns
“Unfortunately the code generated

from the model contained errors
and was unable to execute”

The tool fails to generate
any visualization.

#

#

#

#

#

#

#

#

+

^

^

GPT-4
Intent: city

0 50 100 150 200 250
Number of Records

Contra Costa

Kern

San Diego

Alameda

Santa Clara

San Mateo

co
un

ty

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

year

0

20

40

60

80

100

120

Re
co

rd

0 100 200 300
Number of Records

no

yesw
ea

po
n

fo
un

d

0 50 100 150
Number of Records

no

yesw
ea

po
n

fo
un

d

year > 2016

Intent: county

Intent: weapon_found

Intent: weapon_found,
year > 2016

Intent: weapon_found,
county = ‘Contra Costa County’,

year > 2016
No data is visualized since

“Contra Costa County” is not a
valid value in the column “County”

#

GPT-3.5

Intent: year

Intent: city, county

0 50 100 150 200 250
Number of Records

Contra Costa

Kern

San Diego

Alameda

Santa Clara

San Mateo

co
un

ty

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

year

0

20

40

60

80

100

120

Re
co

rd

0 100 200 300
Number of Records

no

yesw
ea

po
n

fo
un

d

Intent: county

Intent: weapon_found

Intent: year

Intent: year > 2016

#

Intent:
county = ‘Contra Costa County’,

year > 2016

No data is visualized since
no data attribute is predicted

to be visualized by GPT-3.5

#

0 50 100 150 200 250
Number of Records

Richmond
Bakersfield
San Diego
San Jose

Dublin
Santa Rita

Albany
San Pablo

Oakland
Pinole

ci
ty

+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...+ 6 more ...

Alameda
Contra Costa
Kern
San Diego
Santa Clara

county

No data is visualized since
no data attribute is predicted

to be visualized by GPT-3.5

Figure 1: Illustration of a data journalist’s input questions and results from different approaches. A green tick means the result

matches their intent. A red cross means the result is problematic: #means the result is not executable and no visualization is

generated.∧ indicates that the visualization is incorrect. +means that a number is returned, which is unsuitable for visualization.

Finally, existing approaches fail to handle conversational as-

pects. In Fig. 1(e), PICARD fails to understand the relationship
between the new and previous questions as it forgets the attribute
weapon_found in the new SQL query even though the words “what
about” and “those” refers to the previous conversation. GPT-3.5 also
suffers from a similar issue. Furthermore, PICARD also misbehaves
in Fig. 1(f) by adding an unnecessary filter weapon_found = ‘Yes’
and removing year > 2016. This real-world scenario shows the
challenges in applying existing approaches to conversational visual
data exploration. Our quantitative evaluation in Sec. 6 provides a
comprehensive comparison among the approaches.

Thus, an effective approach to infer users’ visualization intent
from conversation should: (1) produce executable results, (2) handle
ambiguity in natural language, and (3) deal with conversations.

3 Problem Formulation

Our goal is to generate visualizations from a dataset consisting of
records, where each record has multiple attributes. At each step or
interaction of the conversation, the user issues a natural language
question or utterance to the conversational interface and receives a
visualization in return: each question or response is called a turn.

We break down the generation of a visualization into two steps as
in prior work [20, 42, 47]: identification of visualization intent, and
of visualization encodings. The former comprises all data-centric
aspects, including the attributes to be visualized and the filters
should be applied. Each filter comprises an attribute, an operator,
and a value. For example, in Fig. 1(f), in the intent found by Luna,
the attribute to be visualized is weapon_found, while the filters
are county = ‘Contra Costa’ and year > 2016. One can map
the filters to the WHERE clause of a SQL query, while the attributes
map to the SELECT clause. There has been extensive prior work on
determining the visualization encoding given the intent, e.g., [23,
24, 27]. For example, Fig. 1(f) shows a bar chart as weapon_found is
a Boolean field. We thus focus on determining visualization intent.

Luna addresses the challenges discussed in Sec. 2 by breaking
down visualization intent prediction into sub-tasks and leverag-
ing different modules for each, rather than a single, often brittle,
model (see Sec. 4). In particular, the attributes and filter values
are drawn from the dataset. This way, the predicted visualization
intent is always executable. Next, we describe how Luna leverages
LLMs as the backbone for each module, with carefully designed
output heads. We leverage LLMs’ ability in understanding natu-
ral language, thereby eliminating brittle heuristics and handling

1186

CIKM ’24, October 21–25, 2024, Boise, ID, USA Haotian Li, Nithin Chalapathi, HuaminQu, Alvin Cheung, and Aditya G. Parameswaran

2. Attributes

weapon_found

1. Count

1

3. Count

2

4. Attributes

year

county

5. Operators
>

=

6. Values
2016

Contra Costa

Visualized A�ributes Data Filters

Figure 2: The six sub-tasks in predicting users’ intent.

language ambiguity. Finally, we further design the input format
which succinctly encodes the previous intent to enable the model to
understand the context in conversations, instead of concatenating
all previous interactions in prior NL2SQL systems.

4 Design of Luna

We next describe how we designed Luna to address the challenges
in inferring visualization intent from conversation.

4.1 Overview

We divide the visualization intent inference problem into six sub-
tasks (Fig. 2) as inspired by prior work [20]. The first two tasks
predict the number of attributes and filters. The next two tasks
leverage these numbers to select attributes for visualization and in
the filters In the final two tasks, the other elements in filters (i.e.,
operators and values) are predicted based on the attributes.

Compared to end-to-end models (e.g., [33]), Luna’s design pro-
vides three benefits. First, the outputs generated by Lunawill al-

ways produce a valid visualization intent, while for prior work
based on auto-regressive models, only around 36% SQL queries
generated by PICARD [33] with T5-3B [31] are syntactically or
semantically valid as our experiments show (see Sec. 6.1.1). Second,
our breakdown simplifies the task for each module, as it only
needs to predict a subset of the final output, e.g., data attributes,
filter values or operators. This makes the models easier to train and
achieve higher accuracy than a single end-to-end model, as Sec. 6
shows. Lastly, our approach provides the flexibility to select

different model architectures for different sub-tasks. For ex-
ample, we utilize a classification head rather than an attention-based
head to predict the number of visualized attributes and then select
the top-related attributes ranked by an attention-based head. Our
experimental results verify the effectiveness of utilizing different
model structures for different sub-tasks.

The architecture of Luna is shown in Fig. 3, comprising of five
fine-tuned BERT-based modules followed by a heuristic-based mod-
ule for filter value selection (Fig. 3). To start, the visualized attribute
count prediction module first predicts the number of data attributes
(𝑘𝑎) to be visualized. Then, the concrete data attributes are selected
according to the ranking of their relevance to users’ interactions,
which is computed by the visualized attribute ranking module. Sim-
ilarly, a separate filter count prediction module determines the num-
ber of data filters (𝑘𝑓) pertinent to the user utterance. Then, the
attributes of the filters are selected as the top-𝑘𝑓 relevant attributes
computed by the filter attribute ranking module. Each data column
is then fed into the filter operator prediction module which selects
one of four operators: <, >, =, and ≠. Finally, the filter value predic-
tion module identifies the values in filters by matching words with
the utterances with the distinct values in the column.

4.2 Basic Structure of LLM-powered Modules

Luna consists of five LLM-powered modules where the LLMs are
applied as backbones to understand the conversations and semantic
meanings of data columns and generate embeddings for prediction.

Specifically, we fine-tuned a pre-trained standard BERT-base
model with 110 million parameters. While BERT is an older and
lightweight model by today’s standards, we find that Luna with
BERT outperforms these state-of-the-art, much larger models (e.g.,
GPT models) in prediction accuracy (see Sec. 6). The input to the
LLMs in the different modules follows the same format, derived
from BERT’s default. The input is formatted as the previous intent
(if any exists), followed by the new utterance and the columns of the
dataset. Specifically, we summarize all previous intents in the con-
versation into a single summary consisting of previous attributes
and filters. We use “previous attributes: ” and “previous filters: ” to
indicate that the two parts reveal different aspects of intent. Fur-
thermore, operators are transformed into natural language as “is,”
“is not,” “is larger than,” etc.

To illustrate, consider part of the conversation shown in Sec. 2,
where each utterance is labeled with its number in bold.
(1) Can you show me the distribution of cases where weapons are

found or not? (1)
(2) What about those cases happened after 2016? (2)
(3) Then can you also show the numbers of those cases in Contra

Costa County? (3)
The input of the last utterance to Luna has two parts:
(1) Previous intent and the newutterance: previous attributes: weapon
found. [SEP] previous predicates: year is larger than 2016. [SEP]
Then can you also show the numbers of those cases in Contra Costa
County?

(2) Columns: id [SEP] weapon found [SEP] city [SEP] county [SEP]
day [SEP] month [SEP] year
In contrast, if we instead concatenate all utterances together, like

PICARD, the first parts of the input will be: “Can you show me the
distribution of cases where weapons are found or not? [SEP] What
about those cases happened after 2016? [SEP] Then can you also show
the numbers of those cases in Contra Costa County?” To understand
the context of the last query, the model needs to correctly under-
stand all three utterances and identify that the word “cases” in the
next two utterances refers to “cases where weapons are found or not”
in the first utterance. As Figs. 1 (e)-(f) shows, PICARD fails to cor-
rectly interpret such references when generating new SQL queries,
showing that it is non-trivial for models to understand the relation-
ship between multiple utterances. This observation shows the need
for a new input format in Luna to facilitate context understanding.

Furthermore, our approach is beneficial in settings involving
a human in the loop. In such settings, it is challenging to ensure
that the system can understand every utterance correctly. There-
fore, users may need to correct the erroneous responses generated
by the system. Such revised responses should be taken into ac-
count when predicting subsequent utterances, which is difficult for
concatenation-based approaches such as PICARD.

After obtaining two parts of the input, we tokenized them in-
dividually and concatenated the tokens to feed into an LLM. For
each token, the LLM produces an embedding vector of 𝑑 dimen-
sions (768 dimensions using BERT). Therefore, the LLM returns

1187

Inferring Visualization Intent from Conversation CIKM ’24, October 21–25, 2024, Boise, ID, USA

New U�erance

A�ribute Names

Prior Intent

BERT

Intent and U�erance
Embedding

Column
Embedding

A�ention Ranking

Filter Count (ka)/
Visualized A�ribute

Count (kf)

Filter/
Visualized
A�ributes

(a) Filter/Visualized A�ribute Count Prediction Module

(b) Filter/Visualized A�ribute Ranking Module (c) Top Ranked Filter/Visualized A�ribute Selection

Filter
Operator

(d) Filter Operator Prediction Module

A Filter A�ribute

Filter
Value

(e) Filter Value Prediction Module

New U�erance

A�ribute Names

Prior Intent

BERT [CLS] Embedding Classi�er

New U�erance

A�ribute Names

Prior Intent

BERT

Intent and U�erance
Embedding

Corresponding Column
Embedding

Classi�er

A Filter A�ribute

New U�erance

Values in DB

Prior U�erance

Value
Matching

Figure 3: Luna’s architecture. (a)-(c) illustrate the modules of predicting visualized attributes and attributes in filters. (d) shows

how the operator in a filter is predicted. (e) represent the module for predicting filter values. The blue boxes are model inputs;

yellow boxes are models; green boxes are intermediate model outputs; orange boxes are visualization intent predictions.

an embedding matrix with a shape of 𝐿 × 𝑑 for input with length
𝐿. Based on the type of content in the input, we split the entire
embedding matrix into two parts: intent and utterance embeddings
and column embeddings. Intent and utterance embeddings refer to
the matrix consisting of the embeddings of both the most recent
intent in the conversation and the current utterance. Similarly, col-
umn embeddings refer to column token embeddings. Note that a
column may have more than one token when the column name
consists of multiple words. To represent each column name with
only one embedding vector, we use the embedding corresponding
to the column name’s first token. We decouple the utterance and
column embeddings so that we can use an attention mechanism
for the utterance on columns, i.e., to compute how the utterance
attends to the columns. Furthermore, the BERT model also returns
the embedding of a special token, [CLS], with a pooling scheme [8].
The embedding of the special token summarizes the entire input to
BERT, and is frequently used for classifying the entire input. The
following sections will introduce how the output embeddings are
leveraged in different modules in detail.

4.3 Visualized Attribute Prediction

Luna uses a two-step algorithm to predict the attributes to be visu-
alized. We first predict the number of attributes with a visualized
attribute count prediction module (Fig. 3(a)), where we use the
BERT model to compute a summary embedding of the context, the
current utterance and the columns, i.e., the embedding of the [CLS]
token. Then the embedding is fed into a two-layer neural network
for classifying the number of attributes, 𝑘𝑎 .

Concurrently, we use a visualized attribute ranking module
(Fig. 3(b)) to rank all attributes in the dataset according to their
relevance to the previous intent and the current utterance. The vi-
sualized attribute ranking module consists of another BERT model
with a multi-head attention layer followed by a feed-forward fully
connected and softmax layer. In the attention layer, the column
embeddings act as the query while the utterance embeddings are
the keys and values. This design helps select the data attribute(s)
to visualize by explicitly forcing the utterance tokens to attend
to the column headers. This architecture generates a probability
distribution over all columns based on the utterance embeddings’

attention on column embeddings. The probability scores indicate
how likely the users intend to visualize these columns according to
their previous intents and new utterances. All columns are finally
ranked from the highest post-softmax probability to the lowest one.

After we obtain the number of attributes (𝑘𝑎), the top-𝑘𝑎 at-
tributes ranked by the visualized attribute ranking module are pre-
dicted as the user’s intended attributes for visualization (Fig. 3(c)).

The reason for Luna’s two-step strategy with attention mecha-
nism is two-fold. First, the nature of the attention mechanism fits
the attribute prediction task well. Its structure explicitly considers
the correspondence between tokens in input query, key, and values.
Since we aim to understand how the words in users’ utterances
match the semantically meaningful attribute names, the attention
mechanism suits our task well.

Moreover, our approach can handle datasets withmany attributes,
unlike prior work. We considered using a multi-class multi-target
classification head following a BERT model to select the attributes
to be visualized. When training the model with such an architec-
ture, we had to fix the number of classes during classification as
the maximum number of attributes in the training set. Consider-
ing the long-tail nature of dataset sizes revealed in previous work
(e.g., [13]), the models might not be trained sufficiently on datasets
with large numbers of attributes and might not generalize well.
Furthermore, in the inference phase, such an architecture cannot be
applied to datasets with more attributes than the number of classes
fixed upfront. Compared to leveraging a multi-class multi-target
classification head, our approach does not add other constraints to
the number of input data attributes despite the input token limit of
the BERT model. A quantitative comparison is in Sec. 6.2.

4.4 Filter Prediction

Besides the visualized attributes, Luna also predicts the desired
data filters to determine the subset of data to be visualized. For the
example in Fig. 1(f), such filters include year > 2016 and county
= ‘Contra Costa’. As the example shows, to get a complete set
of filters, we must infer not just the number of filters, but also the
attributes (e.g., year and county), operators (e.g., > and =), and
values (e.g., 2016 and Contra Costa) of each filter.

1188

CIKM ’24, October 21–25, 2024, Boise, ID, USA Haotian Li, Nithin Chalapathi, HuaminQu, Alvin Cheung, and Aditya G. Parameswaran

Luna predicts the intended filters using four modules jointly
(see Fig. 3). Similar to predicting the visualized attributes, we first
use the BERT model followed by a classifier to predict the count of
filters, 𝑘𝑓 , in the filter count prediction module (Fig. 3(a)). Then, the
attributes in the filters are inferred by picking the top-𝑘𝑓 relevant
attributes computed by the filter attribute rankingmodule (Fig. 3(b)),
where a BERT model with an attention layer is employed.

After obtaining the data column of each filter, we next predict
the operator and value in each filter. For a given filter, the operator
and the value are conditioned only on the filter attribute, previous
intent(s), and the new utterance. Decoupling the filters from each
other simplifies the prediction space of operators and values.

To predict the operator in a filter, we augment the input to the
BERT model by including the filter’s column name in the input
(Fig. 3(d)). The rest of the BERT input is identical to the other
modules. After the intent and utterance embeddings are computed,
we concatenate themwith the predicted column’s embedding vector
and passed them to a classification head with a two-layer neural
network. We do not feed the embedding of the [CLS] token into
the classification head as in the filter attribute prediction module,
since the embedding of [CLS] also summarizes the embedding of
all columns, which may lead to interference between the filter’s
column name and other column names. The classification head
returns the operator in the current filter. The possible operators
include <, >, =, and ≠.

Finally, we predict the value used in each filter (Fig. 3(e)). Unlike
other modules, the value prediction module is not based on ma-
chine learning. In our approach, the current utterance and the prior
utterance are first tokenized into individual words. Using these
tokens, a set of consecutive tokens with lengths 1 to 5 is generated.
We call a sequence of 𝑛 consecutive tokens as an 𝑛-gram. By now,
the model has determined the data filter column. For numerical
columns, any 𝑛-gram that can be parsed as a valid floating point
number is added to a set of candidate values. For all other types
of columns, all unique values from the dataset for the data filter
column are retrieved. Any𝑛-gram that exactly matches such a value
is added to the set of candidate values. In most cases, the number
of candidate values is exactly one and we are done. However, there
may be situations where multiple candidate values exist. Consider
the case where two queries are sequentially provided:
(1) Then can you also show the numbers of those cases in Contra

Costa County? (1)
(2) What about those cases in Alameda County? (2)
The candidate set of values is then sorted temporally and the value
resulting from the most recent utterance is selected. The temporal
order is determined by the label of each utterance, i.e., the bold
number next to each utterance in the examples. We desire the more
“recent” match since it is more relevant to the desired intent.

5 Evaluation Setup

We now discuss the experimental setup to evaluate Luna. Luna and
our prompt for GPT models are available in our code repository1.

1https://github.com/luna-conversation-vis/luna

5.1 Dataset

We derive a custom dataset from CoSQL [45], a conversational
text-to-SQL dataset.
CoSQL. CoSQL consists of 200 SQL databases split across training,
validation, and test sets. The training set consists of 2159 con-
versations and 7343 interactions, while the validation set has 293
conversations and 1007 interactions. Since the test set of CoSQL
is not publicly available, we created a test set by sampling 35% in-
teractions of the original validation set. The other 65% interactions
were still used as the validation set. When creating the test set,
we ensured that the test and validation sets do not share the same
databases. Our final test set includes 103 conversations and 349
interactions (with one interaction removed due to malformed SQL),
and the validation set has 190 conversations and 657 interactions.
Dataset Processing. We extract visualization intent from the SQL
queries in CoSQL to create a dataset for training and testing Luna
with other baseline approaches. Fig. 4 shows an example of how
we extract visualization intent; Figs. 4(a)-(b) show an original in-
teraction in CoSQL. First, we use a fork of Mozilla’s SQL parser
called mo-sql-parsing [18] to generate a parse tree of each SQL
query (Fig. 4(c)). Using each SQL parse tree, we extract the SELECT
attributes and predicate clauses. Each predicate clause has the form
ATTRIBUTE, OPERATOR, VALUE where OPERATOR is one of >, ≠, <,
=. ATTRIBUTE is one of the columns of the SQL database and VALUE
is a fixed value. For < and >, VALUE must be a numerical value that
may or may not be in the SQL database, but when OPERATOR is = or
≠, VALUEmay be a numerical value or string. The SELECT attributes
and predicate clauses are mapped to visualized attributes and data
filters in visualization intent (Fig. 4(d)).

What are the populations of
every country in Africa?

SELECT name, population
FROM country

WHERE Continent = “Africa”

(a) U�erance

(b) SQL

(d) Intent

A�ributes: Name Population

Filter:
Continent = Africa
A�ribute: Operator: Value:

{
 'select': [
 {'value': 'name'},
 {'value': 'population'}
],
 'from': 'country',
 'where': {
 'eq': [
 'Continent',
 'Africa'
]
 }
}

(c) Parsed SQL

Figure 4: Example CoSQL interaction being transformed.

5.2 Luna Setup

Module setup. For Luna’s visualized attribute count and filter
count prediction modules, the hidden layer has size 1028. We set
the number of classes in the attribute and predicate count modules
to 7 (i.e., 0− 6 attributes) and 5 (i.e., 0− 4 filters), respectively, based
on the training data. In our modules with attentionmechanisms (i.e.,
attribute ranking and predicate ranking prediction), the number of
attention heads is set to 8 with 64 dimensions. In the filter operator
prediction module, the size of the hidden layer is 512. The number
of classes in the predicate operator is set to 4 (i.e., <, >, =, and ≠).
Input formulation. As in Sec. 4.2, the input to our model includes
the previous intent when there are prior interactions. We feed
the ground truth previous intent to Luna together with the new
utterance to predict the current intent. To understand Luna’s ability
to handle cascading errors from a wrongly predicted intent, we also
conduct an experiment where we feed Luna’s previously predicted
intent instead of the ground truth. The accuracy of Luna with this

1189

https://github.com/luna-conversation-vis/luna

Inferring Visualization Intent from Conversation CIKM ’24, October 21–25, 2024, Boise, ID, USA

setting is also provided for reference in Table 2. We note, however,
that users will typically fix any errors in the intent rather than let
the errors cascade (i.e., making sure they see what they intended
before proceeding). Therefore, when not mentioned, we report the
accuracy of using ground truth as the input by default.
Training details. We use 8 training epochs to fine-tune BERT
and train our classifiers using the training set. Then the best model
is selected with the validation set. To train the model, we use the
Adam optimizer [17] with a BERT learning rate of 5𝑒−5 and a head
learning rate of 5𝑒−5. Furthermore, we noticed an unbalanced data
distribution in all classification sub-tasks (i.e., visualized attribute
count, filter count, and filter operator prediction). To mitigate
data skew, we over-sample the training set by categories (i.e., the
possible numbers of visualized attributes, the possible numbers of
filters, and filter operator types).

5.3 Baseline Models Setup

We compare the performance of Luna with six other state-of-the-
art approaches. We used the publicly available version of the pre-
trained models to run the experiments.
NL4DV. As far as we know, NL4DV [26, 28] is the only publicly
available system that creates visualizations based on multi-turn
conversations. Notably, NL4DV can recommend multiple visual-
izations with ranking. To make the results comparable, we keep
the visualization with the highest rank.
PICARD.We tried to find other models by scanning through the
CoSQL leaderboard [1] and noticed that the top 5 models are not
publicly accessible or can only predict the data columns and op-
erators in data filters without detailed values to be filtered (e.g.,
STAR [6]), hence we chose the 6th-ranking model (as of May 2024),
PICARD [33], as a representative of the best state-of-the-art conver-
sational NL2SQL models. We use two PICARD variants, one with
with a T5 model with 3 billion parameters (denoted as T5-3B) [31],
and a smaller T5 model with 880 million parameters (denoted as
T5-Large) since the number of parameters is closer to the total
number of parameters in Luna. For brevity, two PICARD variants
are denoted as PICARD-3B and PICARD-Large.
CD-Seq2Seq. Following prior work [14, 48], we also include the
results of CD-Seq2Seq (short for Context-dependent Seq2Seq) that
is used as a baseline approach for the CoSQL dataset [45]. However,
CD-Seq2Seq is unable to predict the values in predicates. There-
fore, we consider all predicate values correct when reporting the
performance, which is a loose upper bound on its actual accuracy.
GPTmodels.GPT-3.5 and GPT-4 have shown good performance in
responding to natural language queries with visualizations [9, 25].
However, previous studies leveraging GPT models focus on answer-
ing one-shot natural language queries with visualizations. Further-
more, such models return visualization code instead of visualization
intent, which is different from Luna’s output. Therefore, to com-
pare Luna with GPT models, we followed prior work [4, 9, 25]
and prompt GPT-3.5-turbo-0613 and GPT-4-0613 through Azure
OpenAI APIs to infer visualization intent and return it in JSON.

6 Evaluation Results

We compare Luna’s performance with baseline approaches in
Sec. 5.3 and explore alternatives in the architecture of Luna.

6.1 Comparison with Baseline Approaches

We evaluate the aforementioned approaches on their ability to
correctly predict visualization intent.
Table 2: Comparison of existing approaches with the highest

accuracies in bold.

Model Validation Accuracy Test Accuracy

Luna (Correct Previous Intent) 51.29% 57.31%

Luna (Cascade) 46.73% 54.57%
NL4DV 10.48% 16.31%
PICARD-3B 38.97% 49.57%
PICARD-Large 38.66% 50.14%
GPT-3.5 34.15% 42.57%
GPT-4 33.03% 44.87%
CD-Seq2Seq 18.57% 26.65%

6.1.1 Results. Table 2 shows the overall accuracy. Luna achieves
the best performance among all four tested approaches, with 51.29%
and 57.31% accuracy on the validation and the test set respectively,
when using the ground truth previous intent as part of the input
(Luna (Correct Previous Intent)). When we feed the previously
predicted intent to Luna without re-training (Luna (Cascade)) the
accuracy scores are 46.73% and 54.57% on the validation and the
test sets, respectively. The small difference between the results
reveals that our model can be affected by cascading errors, but the
performance loss is minor. Since users will typically correct such
errors, as discussed in Sec. 5, and since the difference is minor, we
focus on the former in the following. Overall, these results indicate
that Luna has a much greater ability to infer visualization intent
compared to other approaches.

Compared to NL4DV, the latest conversational NL2VIS approach,
Luna has a substantial increase of 251.01% in test accuracy. It is
also superior to NL2SQL approaches, including PICARD variants
and CD-Seq2Seq by 15.61%, 14.30%, and 115.05%. Note that the
improvement relative to CD-Seq2Seq is actually even greater, due
to our assumption that CD-Seq2Seq can predict all of the filter
values correctly (see Sec. 5), and therefore its reported accuracy is
an overestimate. Notably, though the backbone of Luna is BERT,
a relatively outdated and small LLM, Luna still outperforms the
latest and much larger LLMs, GPT-3.5 and GPT-4, by 32.28% and
27.72%, respectively. Since NL4DV and CD-Seq2Seq perform worse
than Luna, the PICARD variants, and GPT models, we focus on
comparing Luna with PICARD and GPT in the following.

We conclude with two observations for Luna’s performance
comparison against PICARD and GPT. First, Luna shows better
performance in both the accuracy scores of visualized attributes and
filters. To understand the performance difference between these
approaches, we inspect their accuracy breakdown on correctly
identifying the visualized attributes and filters. The results in Table 4
show that Luna has a better performance on both components of
visualization intent, verifying the effectiveness of Luna’s approach
in dividing visualization intent inference into sub-tasks and training
specialized models for specific tasks.

To further understand the differences, Table 3 compares Luna,
GPT, and PICARD in five cases: correct attributes and filters, cor-
rect attributes but wrong filters, correct filters but wrong attributes,
wrong attributes and filters, and other errors (such as JSON struc-
ture errors when evaluating GPT models and unexecutable errors
when evaluating PICARD models). One important problem with

1190

CIKM ’24, October 21–25, 2024, Boise, ID, USA Haotian Li, Nithin Chalapathi, HuaminQu, Alvin Cheung, and Aditya G. Parameswaran

Table 3: Accuracy breakdown of Luna, PICARD, and GPT

across different categories. A: attributes, F: filters.

Model - Dataset Split Correct

A+F

Correct

A

Correct

F

Wrong

A+F

Others

Luna- Val 51.29% 22.83% 19.18% 6.70% N/A
PICARD-3B - Val 38.97% 9.59% 8.83% 2.44% 40.18%
PICARD-Large - Val 38.66% 8.83% 8.83% 2.74% 40.94%
GPT-3.5 - Val 34.15% 25.15% 19.36% 16.01% 5.34%
GPT-4 - Val 33.03% 19.42% 29.05% 17.43% 1.07%

Luna- Test 57.31% 19.77% 14.90% 8.02% N/A
PICARD-3B - Test 49.57% 8.88% 10.03% 2.01% 29.51%
PICARD-Large - Test 50.14% 5.44% 9.17% 2.58% 32.66%
GPT-3.5 - Test 42.57% 23.91% 16.91% 12.83% 3.79%
GPT-4 - Test 44.87% 17.01% 28.15% 8.80% 1.17%

Table 4: Comparison of existing end-to-end methods broken

down by visualized attributes and data filters. The highest

accuracies are in bold. A: attributes, F: filters.

Model Val-A Val-F Test-A Test-F

Luna 74.12% 70.47% 77.08% 72.21%
NL4DV 23.79% 16.64% 31.69% 23.08%
PICARD-3B 48.55% 47.79% 58.45% 59.60%
PICARD-Large 47.49% 47.49% 55.59% 59.31%
GPT-3.5 59.30% 53.51% 66.47% 59.48%
GPT-4 52.45% 62.08% 61.88% 73.02%

CD-Seq2Seq 25.11% 30.90% 35.53% 38.11%

the PICARD variants is that they often generate queries that are
not executable. Among all generated SQL queries, we notice that
40.18% and 29.51% of the queries in the validation and the test sets
for PICARD with T5-3B are not executable while the numbers are
40.94% and 32.66% for PICARD with T5-Large, respectively. The
main reasons for these failures include syntax errors and semantic
errors, such as those in Fig. 1. Some frequent syntax errors include
the misuse of quotation marks (see Fig. 1(f)) and the incorrect selec-
tion when using group by, such as the queries in Fig. 1 (c) and (d).
The results imply that the structure or the grammar of the output
can be a severe issue for the end-to-end generative models that have
to learn them from training data. Meanwhile, most of the semantic
errors pertain to data types, like applying avg on text columns.
These errors show that it is unreliable to generate visualization
intent from only semantic information in the natural language ut-
terances. Such issues also lower the performance of the GPTmodels.
They can generate results without inappropriate JSON, such as in-
valid structure, missing keys, or natural language responses. For
example, GPT-4 returns “Sorry, but this dataset doesn’t contain any
information about Gonzalo Higuaín” when the query would like to
filter a customer whose name is Gonzalo Higuaín.

To conclude, PICARD often fails due to the lack of ability to
generate executable SQL queries but shows potential in compre-
hending the intent from conversations correctly. In contrast, GPT
models, especially GPT-4, are often unable correctly understand
visualization intent from conversations but maintain the correct-
ness of output structure, possibly because they aren’t specifically
trained for identifying visualization intent. Luna combines their
advantages: it understands visualization intent through training on
conversational intent and guarantees an always executable output
following our task breakdown.

Finally, Luna is smaller than both T5-3B and T5-Large PICARD
variants in terms of model size by 81.67% and 37.50%. The smaller

Table 5: Individual component accuracies and alternatives.

The components in italic were applied in Luna. The accuracy

scores in bold were the highest ones.

Component Method Val Test

Visualized Attribute
Count

Classification 89.65% 92.55%

Attention (English e.g., “one”) 83.71% 87.97%
Attention (Numerical e.g.,“1”) 86.76% 91.69%

Visualized Attribute Attention 80.37% 81.66%

Classification 75.65% 78.80%

Filter Count
Classification 86.00% 85.39%

Attention (English e.g., “one”) 81.28% 81.38%
Attention (Numerical e.g.,“1”) 81.28% 81.95%

Filter Attribute Attention 86.30% 86.82%

Classification 80.21% 82.24%

Filter Operator
Classification 99.09% 97.13%
Attention (English e.g., “less than”) 97.87% 97.42%

Attention (Symbolic e.g., “<”) 98.94% 97.42%

Filter Value Temporal Text Matching (Last) 87.06% 85.39%

Temporal Text Matching (First) 81.89% 80.23%

size allows Luna to run on resource-limited devices with uncom-
promised performance. Following Shen et al. [36], we compare the
peak GPU memory usage and average time of inference of Luna
and PICARDwith an Nvidia A100-40GB. The batch size of inference
is set to 1. The memory usage and time are computed over both
the validation and the test set. The memory usage data is collected
with Nvidia System Management Interface (SMI) [29] per second.
Luna achieves better performance (with at most 2,843 MB memory)
using around 12% memory of PICARD with T5-3B (with at most
23,704 MB memory) and 37% memory of PICARD with T5-Large
(with at most 7,751 MB memory) and also takes much less time
for inference (Average inference time: Luna: 0.1 Sec, PICARD with
T5-3B: 142.7 Sec2, PICARD with T5-Large: 152.6 Sec). Moreover,
since Luna consists of several BERT models, it is possible to use
multiple devices to train and deploy Luna in a distributed manner,
which enhances the flexibility of Luna on resource-limited devices.

6.2 Individual Module Evaluation

We now report the performance of individual Luna modules com-
pared to alternative designs discussed in Secs. 4.3 and 4.4. For each
component with BERT, we compare alternative model choices, i.e.,
classification heads or attention-based heads as introduced in Sec. 4.
For filter value prediction, two strategies of temporal value match-
ing, i.e., picking the first or last matched value, are compared. Since
somemodules may rely on the input of the previous module (e.g., fil-
ter operator prediction), we feed the ground truth to these modules
to remove cascading errors. The results are shown in Table 5.
Visualized Attribute and Filter Count Prediction. As shown in
Fig. 3(a), we apply a classifier to predict the number of visualized
and filter attributes. An alternative design is to use an attention-
based head that attends the embedding of the previous intent, new
utterance, and the attributes to the number of attributes. The model
structure of this alternative design is similar to the one shown
in Fig. 3(b). The representation of the number of attributes can
be either English words (e.g., “one”, “two”) or a string version of
the numbers (e.g., “1”, “2”). Since there is no apparent difference

2According to the PICARD paper [33], their inference time on Spider [46] is 3.1 Sec.
We both apply Nvidia A100 with 40GB of memory to run PICARD variants.

1191

Inferring Visualization Intent from Conversation CIKM ’24, October 21–25, 2024, Boise, ID, USA

between the two representation approaches, we train and evaluate
the model with both using the same training settings in Sec. 5.2.

The results in Table 5 show that the classification head achieves
the best accuracy among three alternative choices, achieving 89.65%
and 92.55% when predicting the number of visualized attributes on
our validation and test sets. The accuracy of predicting filter counts
is 86.00% and 85.39% on the two sets, respectively. We believe the
reason for the lower accuracy scores of the attention mechanism is
that training the attention mechanism requires the model to learn
the semantic relationship between the embedding of input and the
embedding of numbers.
Visualized and Filter Attribute Prediction. After obtaining the
number of visualized attributes and filters, we select the top-𝑘
attributes ranked by the ranking model (Fig. 3(b)). Since there is no
ground truth for the rankings of attributes, we cannot evaluate the
attribute ranking models directly. Instead, we use the ground truth
numbers of visualized attributes and filters to select the visualized
and filter attributes. Then, the selected attributes are compared
with the ground truth to evaluate the ranking models indirectly.

As in Sec. 4.3, one alternative to the attention mechanism is a
multi-target multi-class classifier. We implement a two-layer fully-
connected neural network with a hidden size of 1028. The number
of output classes is set to 132 classes, representing column choices.
132 is the maximum number of columns in any database across the
training, validation, and test sets. In order for the classifier to be
applicable to every database, it must have at least 132 classes.

As our results show, the classification heads perform worse than
the attention-based head in both tasks. Each database has a different
set of column names, with different semantic meanings that make
the classification task challenging. Most classification tasks keep
the meaning of each class consistent to ensure that predictions
are standardized across inputs. This assumption does not hold in
our setting where each class has a different meaning depending on
the input database schema. Furthermore, as Sec. 4.3 mentions, the
large number of classes, i.e., 132, can bring additional challenges
for training a classifier with satisfactory performance.
Predicate Operator Selection. In Luna, a classifier is used to
predict the operators in the filters. Instead of a classification head,
we may also apply an attention mechanism that attends to either
the symbolic version of each operator (i.e., <, >, =, !=) or the Eng-
lish description (i.e., less than, greater than, equal to, not equal to).
As shown in Table 5, these three alternative choices work almost
equally well. They all achieve an accuracy of over 97% on both the
validation and the test set. We hypothesize that the task of predict-
ing filter operators is relatively simple since the filter operations
can be directly included in users’ utterances. For example, the word
“after” in “What about those cases happened after 2016?” directly
indicates that the operator should be “larger than.” Therefore, all
three model choices can handle the task well. Based on the valida-
tion accuracy, we selected the classification head to conduct the
operator prediction task in Luna.
Filter Value Prediction. As mentioned in Sec. 4.4, we adopt a
simple text matching-based approach to identify the filter values.
There are two possible designs when searching for the matched text.
We can either select the first matched value or the last matched one.
The experimental results in Table 5 justify our design rationale that
the last matched value can be more relevant to the user’s intent.

7 Related Work

Natural Language to Visualization. Recent work has explored
natural language-to-visualization (NL2VIS) interfaces [35] support-
ing either multi-turn conversations or only single questions. Early
systems, e.g., [10, 34, 37, 39, 44], adopt a rule-based approach to
parse user utterances and match words with data columns or oper-
ations, greatly limiting their flexibility. Some work applies LLMs
to understand single-shot natural language utterances and recom-
mend visualizations. Early work [7, 21, 22] trained new models to
address the NL2Vis challenges while recent work [9, 25] leverage
general-purpose LLMs. We find that Luna outperforms state-of-
the-art LLMs such as GPT-3.5 and GPT-4.

Previous research has shown that visual data analysis is progres-
sive [16, 19, 41]. However, the aforementioned approaches does
not support such a progressive workflow. A few prior tools have
explored conversational NL2Vis using rule-based approaches, such
as [12, 38]. Finally, the recent version of NL4DV [26] extends the
original version [28] to a conversational setting by searching the
user input for keywords to indicate a follow-up utterance. Due to
their rule-based nature, these approaches easily break.
Natural Language to SQL. Most conversational NL2SQL ap-
proaches apply end-to-end generative models to translate natural
language utterances into SQL. For example, CD-Seq2Seq [40, 46]
applies bi-directional recurrent neural networks to encode the con-
text and the current utterance and decode the embedding to SQL
queries. R2SQL [14] and EditSQL [48] enhances the encoder with
BERT-based models [8]. More recently, PICARD [33] and Unified-
SKG [43] leverage T5 [31]. There are two challenges when applying
these end-to-end NL2SQL models in inferring visualization intent.
First, it is hard to guarantee that the generated SQL queries are
both syntactically and semantically correct [33]. Furthermore, some
complex SQL queries cannot be easily interpreted as visualization
intent, such as those with subqueries. In contrast, Luna guarantees
the generation of correct and interpretable visualization intent.

8 Conclusion and Future Work

We propose Luna as a framework to infer visualization intent from
conversation. Unlike end-to-end generative models, Luna leverages
several specialized LLM-based modules to predict different aspects
of visualization intent separately. We demonstrate the effectiveness
of Luna through a quantitative comparison with baseline NL2Vis
and NL2SQL approaches. We also validate the efficacy of Luna in a
real world scenario of exploring police misconduct. As future work,
we plan to enhance Luna to identify visualization-specific aspects,
such as visualization type. We will also explore interface modalities
for easily fixing incorrect intent. Furthermore, evaluating Luna
with additional datasets and user studies can reveal more insights.
Acknowledgements. This work is supported in part by the NSF
through grants DGE-2243822, IIS-2129008, IIS-1940759, IIS-1940757,
IIS-1955488, IIS-2027575, ARO W911NF2110339, ONR N00014-21-1-
2724, and DOE award DE-SC0016260, DE-SC0021982, by the Hong
Kong RGC GRF through the grant 16210321, funds from the State
of California, as well as EPIC lab sponsors: G-Research, Adobe,
Microsoft, Google, and Sigma Computing. We also thank our col-
laborators: David Barstow, Tristan Chambers, Lisa Pickoff-White,
Cheryl Phillips, and Tarak Shah, for their help and encouragement.

1192

CIKM ’24, October 21–25, 2024, Boise, ID, USA Haotian Li, Nithin Chalapathi, HuaminQu, Alvin Cheung, and Aditya G. Parameswaran

References

[1] [n. d.]. CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain
Natural Language Interfaces to Databases. https://yale-lily.github.io/cosql.

[2] [n. d.]. GPT-3.5. https://platform.openai.com/docs/models/gpt-3-5.
[3] [n. d.]. PowerBI. https://www.microsoft.com/en-us/power-platform/products/

power-bi.
[4] [n. d.]. Prompt engineering. https://platform.openai.com/docs/guides/prompt-

engineering.
[5] [n. d.]. Tableau. https://www.tableau.com/.
[6] Zefeng Cai, Xiangyu Li, Binyuan Hui, Min Yang, Bowen Li, Binhua Li, Zheng

Cao, Weijie Li, Fei Huang, Luo Si, and Yongbin Li. 2022. STAR: SQL Guided
Pre-Training for Context-dependent Text-to-SQL Parsing. In Findings of the
Association for Computational Linguistics: EMNLP 2022, Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics,
1235–1247. https://aclanthology.org/2022.findings-emnlp.89

[7] Xinyun Chen, Linyuan Gong, Alvin Cheung, and Dawn Song. 2021. PlotCoder:
Hierarchical Decoding for Synthesizing Visualization Code in Programmatic Con-
text. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers). Association for Computational
Linguistics, 2169–2181.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[9] Victor Dibia. 2023. LIDA: A Tool for Automatic Generation of Grammar-Agnostic
Visualizations and Infographics using Large Language Models. arXiv preprint
arXiv:2303.02927 (2023).

[10] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Karahalios.
2015. DataTone: Managing Ambiguity in Natural Language Interfaces for Data
Visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, Celine Latulipe, Bjoern Hartmann, and Tovi Grossman
(Eds.). ACM, 489–500. https://doi.org/10.1145/2807442.2807478

[11] Soreath Hok, Molly Peterson, and Lisa Pickoff-White. 2022. Bakers-
field Police Department fails to identify people in crisis, thwarting re-
form. https://www.kvpr.org/local-news/2022-04-12/bakersfield-police-
department-fails-to-identify-people-in-crisis-thwarting-reform

[12] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac Dykeman. 2018. Applying
Pragmatics Principles for Interaction with Visual Analytics. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (2018), 309–318. https://doi.org/10.
1109/TVCG.2017.2744684

[13] Kevin Zeng Hu, Snehalkumar (Neil) S. Gaikwad, Madelon Hulsebos, Michiel A.
Bakker, Emanuel Zgraggen, César A. Hidalgo, Tim Kraska, Guoliang Li, Arvind
Satyanarayan, and Çagatay Demiralp. 2019. VizNet: Towards A Large-Scale
Visualization Learning and Benchmarking Repository. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. ACM, 662. https:
//doi.org/10.1145/3290605.3300892

[14] Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li, Yongbin Li, Jian Sun, Fei
Huang, Luo Si, Pengfei Zhu, and Xiaodan Zhu. 2021. Dynamic Hybrid Relation
Exploration Network for Cross-Domain Context-Dependent Semantic Parsing.
In Proceedings of the 35th AAAI Conference on Artificial Intelligence. AAAI Press,
13116–13124.

[15] John D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science & Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

[16] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.
In Proceedings of the 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing, Austin Z. Henley, Peter Rogers, and Anita Sarma (Eds.). IEEE
Computer Society, 25–29. https://doi.org/10.1109/VLHCC.2017.8103446

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proceedings of the 3rd International Conference on Learning Represen-
tations.

[18] Kyle Lahnakoski. [n. d.]. More SQL Parsing! https://github.com/klahnakoski/mo-
sql-parsing

[19] Doris Jung Lin Lee, Himel Dev, Huizi Hu, Hazem Elmeleegy, and Aditya G.
Parameswaran. 2019. Avoiding Drill-down Fallacies with VisPilot: Assisted
Exploration of Data Subsets. In Proceedings of the 24th International Conference
on Intelligent User Interfaces. ACM, 186–196. https://doi.org/10.1145/3301275.
3302307

[20] Doris Jung Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and
Aditya G. Parameswaran. 2021. Lux: Always-on Visualization Recommendations
for Exploratory Dataframe Workflows. Proceedings of the VLDB Endowment 15, 3
(2021), 727–738. https://doi.org/10.14778/3494124.3494151

[21] Can Liu, Yun Han, Ruike Jiang, and Xiaoru Yuan. 2021. ADVISor: Auto-
matic Visualization Answer for Natural-Language Question on Tabular Data.
In Proceedings of the 14th IEEE Pacific Visualization Symposium. IEEE, 11–20.

https://doi.org/10.1109/PacificVis52677.2021.00010
[22] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi

Qin. 2022. Natural Language to Visualization by Neural Machine Translation.
IEEE Transactions on Visualization and Computer Graphics 28, 1 (2022), 217–226.
https://doi.org/10.1109/TVCG.2021.3114848

[23] Jock D. Mackinlay. 1986. Automating the Design of Graphical Presentations
of Relational Information. ACM Transactions on Graphics 5, 2 (1986), 110–141.
https://doi.org/10.1145/22949.22950

[24] Jock D. Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic
Presentation for Visual Analysis. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1137–1144. https://doi.org/10.1109/TVCG.2007.70594

[25] Paula Maddigan and Teo Susnjak. 2023. Chat2VIS: Generating Data Visualiza-
tions via Natural Language Using ChatGPT, Codex and GPT-3 Large Language
Models. IEEE Access 11 (2023), 45181–45193. https://doi.org/10.1109/ACCESS.
2023.3274199

[26] Rishab Mitra, Arpit Narechania, Alex Endert, and John Stasko. 2022. Facilitating
Conversational Interaction in Natural Language Interfaces for Visualization. ,
6-10 pages. https://doi.org/10.1109/VIS54862.2022.00010

[27] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith,
Bill Howe, and Jeffrey Heer. 2019. Formalizing Visualization Design Knowledge
as Constraints: Actionable and Extensible Models in Draco. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2019), 438–448. https://doi.org/10.
1109/TVCG.2018.2865240

[28] Arpit Narechania, Arjun Srinivasan, and John T. Stasko. 2021. NL4DV: A Toolkit
for Generating Analytic Specifications for Data Visualization from Natural Lan-
guage Queries. IEEE Transactions on Visualization and Computer Graphics 27, 2
(2021), 369–379. https://doi.org/10.1109/TVCG.2020.3030378

[29] Nvidia. [n. d.]. System Management Interface SMI. https://developer.nvidia.
com/nvidia-system-management-interface

[30] OpenAI. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).
[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21 (2020), 140:1–140:67.

[32] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.
1109/TVCG.2016.2599030

[33] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD: Pars-
ing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics, 9895–9901.
https://doi.org/10.18653/v1/2021.emnlp-main.779

[34] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A Natural Language Interface for Visual Analysis. In Pro-
ceedings of the 29th Annual Symposium on User Interface Software and Technology.
ACM, 365–377. https://doi.org/10.1145/2984511.2984588

[35] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2022. Towards Natural Language Inter-
faces for Data Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics 29, 6 (2022), 3121–3144.

[36] Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and
Chuang Gan. 2023. ModuleFormer: Learning Modular Large Language Models
From Uncurated Data. CoRR abs/2306.04640 (2023). https://doi.org/10.48550/
arXiv.2306.04640

[37] Tarique Siddiqui, Paul Luh, Zesheng Wang, Karrie Karahalios, and Aditya
Parameswaran. 2020. Shapesearch: A flexible and efficient system for shape-based
exploration of trendlines. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 51–65.

[38] Arjun Srinivasan and Vidya Setlur. 2021. Snowy: Recommending Utterances
for Conversational Visual Analysis. In Proceedings of the 34th Annual ACM
Symposium on User Interface Software and Technology. ACM, 864–880. https:
//doi.org/10.1145/3472749.3474792

[39] Arjun Srinivasan and John T. Stasko. 2018. Orko: Facilitating Multimodal Inter-
action for Visual Exploration and Analysis of Networks. IEEE Trans. Vis. Comput.
Graph. 24, 1 (2018), 511–521. https://doi.org/10.1109/TVCG.2017.2745219

[40] Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018. Learning to Map Context-
Dependent Sentences to Executable Formal Queries. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 2238–2249.

[41] John W. Tukey. 1977. Exploratory Data Analysis. Addison-Wesley.
[42] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock D. Mackinlay,

Bill Howe, and Jeffrey Heer. 2016. Towards a General-purpose Query Language
for Visualization Recommendation. In Proceedings of the Workshop on Human-In-
the-Loop Data Analytics. ACM, 4. https://doi.org/10.1145/2939502.2939506

[43] Tianbao Xie, Chen HenryWu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro
Yasunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor
Zhong, Bailin Wang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir

1193

https://yale-lily.github.io/cosql
https://platform.openai.com/docs/models/gpt-3-5
https://www.microsoft.com/en-us/power-platform/products/power-bi
https://www.microsoft.com/en-us/power-platform/products/power-bi
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://www.tableau.com/
https://aclanthology.org/2022.findings-emnlp.89
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/2807442.2807478
https://www.kvpr.org/local-news/2022-04-12/bakersfield-police-department-fails-to-identify-people-in-crisis-thwarting-reform
https://www.kvpr.org/local-news/2022-04-12/bakersfield-police-department-fails-to-identify-people-in-crisis-thwarting-reform
https://doi.org/10.1109/TVCG.2017.2744684
https://doi.org/10.1109/TVCG.2017.2744684
https://doi.org/10.1145/3290605.3300892
https://doi.org/10.1145/3290605.3300892
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/VLHCC.2017.8103446
https://github.com/klahnakoski/mo-sql-parsing
https://github.com/klahnakoski/mo-sql-parsing
https://doi.org/10.1145/3301275.3302307
https://doi.org/10.1145/3301275.3302307
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1109/PacificVis52677.2021.00010
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1145/22949.22950
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/ACCESS.2023.3274199
https://doi.org/10.1109/ACCESS.2023.3274199
https://doi.org/10.1109/VIS54862.2022.00010
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2020.3030378
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.48550/arXiv.2306.04640
https://doi.org/10.48550/arXiv.2306.04640
https://doi.org/10.1145/3472749.3474792
https://doi.org/10.1145/3472749.3474792
https://doi.org/10.1109/TVCG.2017.2745219
https://doi.org/10.1145/2939502.2939506

Inferring Visualization Intent from Conversation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Radev, Caiming Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith, Luke Zettle-
moyer, and Tao Yu. 2022. UnifiedSKG: Unifying and Multi-Tasking Structured
Knowledge Grounding with Text-to-Text Language Models. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Yoav Goldberg, Zor-
nitsa Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics,
602–631. https://aclanthology.org/2022.emnlp-main.39

[44] Bowen Yu and Cláudio T. Silva. 2020. FlowSense: A Natural Language Interface
for Visual Data Exploration within a Dataflow System. IEEE Trans. Vis. Comput.
Graph. 26, 1 (2020), 1–11. https://doi.org/10.1109/TVCG.2019.2934668

[45] Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin,
Yi Chern Tan, Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok
Shim, Tao Chen, Alexander R. Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya
Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter S. Lasecki, and
Dragomir R. Radev. 2019. CoSQL: A Conversational Text-to-SQL Challenge
Towards Cross-Domain Natural Language Interfaces to Databases. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing. Association
for Computational Linguistics, 1962–1979. https://doi.org/10.18653/v1/D19-1204

[46] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R.
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 3911–3921. https://doi.org/10.18653/v1/d18-1425

[47] Zehua Zeng, Phoebe Moh, Fan Du, Jane Hoffswell, Tak Yeon Lee, Sana Malik,
Eunyee Koh, and Leilani Battle. 2022. An Evaluation-Focused Framework for
Visualization Recommendation Algorithms. IEEE Transactions on Visualization
and Computer Graphics 28, 1 (2022), 346–356. https://doi.org/10.1109/TVCG.2021.
3114814

[48] Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze Shi,
Caiming Xiong, Richard Socher, and Dragomir Radev. 2019. Editing-Based SQL
Query Generation for Cross-Domain Context-Dependent Questions. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing. Associ-
ation for Computational Linguistics, 5338–5349. https://doi.org/10.18653/v1/D19-
1537

1194

https://aclanthology.org/2022.emnlp-main.39
https://doi.org/10.1109/TVCG.2019.2934668
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537

	Abstract
	1 Introduction
	2 Motivating Example
	3 Problem Formulation
	4 Design of Luna
	4.1 Overview
	4.2 Basic Structure of LLM-powered Modules
	4.3 Visualized Attribute Prediction
	4.4 Filter Prediction

	5 Evaluation Setup
	5.1 Dataset
	5.2 Luna Setup
	5.3 Baseline Models Setup

	6 Evaluation Results
	6.1 Comparison with Baseline Approaches
	6.2 Individual Module Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References

